

HID Gadget Device: Using The ODROID-C2
 April 1, 2018

The following guide describes how to setup the ODROID-C2 as a HID gadget device

Shinobi Closed Circuit TV (CCTV): Creating a Video Monitoring
System Using the ODROID-HC2
 April 1, 2018

It is my pleasure to share my experience creating a home CCTV video monitoring
system using the ODROID-HC2 and Shinobi CCTV software. Hopefully this helps

someone out there who is looking to have a video monitoring system of their own. In my opinion, traditional
home alarm systems generally just cause

Portable Sound Studio: Record Music with an ODROID-XU4Q
Anytime, Anywhere
 April 1, 2018

There is a lack of inexpensive hardware systems in today’s market that can handle the
variety of live recordings that make up the majority of my business. However, I have to

gut my studio and re-patch my PA system to take it on the road. I began wondering if I

Linux Gaming: Saturn Games – Part 3
 April 1, 2018

We are back with this month’s look at Sega Saturn games for the ODROID-XU3/XU4.
Last time I talked about a lot of shoot ‘em ups, but this article has a good mix of
di�erent genres, although I did pick quite a few “mecha” games I enjoy. Since this is the

Arcade Box
 April 1, 2018

We made our own arcade box with simple GPIO buttons and joysticks, and called it the
ODROID Arcade Box

Nextcloud Server: Creating a Network Access Storage (NAS) with an
ODROID-HC2
 April 1, 2018

This guide will walk you through setting up a NAS (Network Attached Storage) on the
ODROID-HC2 single-board computer. The guide is written for those with no Linux

experience and minimal computer building experience. And it contains the content involved reading a few
dozen guides.

Control Any Electrical Device With An ODROID-C2: A Sample Project
 April 1, 2018

We will present you with a way to control almost any electrical device with a single click
from any other device that has access to the web

Prospectors, Miners and 49er’s – Part 2: Dual GPU-CPU Mining on
the XU4/MC1/HC1/HC2
 April 1, 2018

Here is brief summary of the kernels and crypto algorithms that were modi�ed for the
Odroid and the test results.

Secure Storage: Creating an Encrypted File System in Linux
 April 1, 2018

Learn how to encrypt your �le system on an ODROID using LUKS as the key setup.

Tvheadend
 April 1, 2018

The following instructions show how to compile the TVH code for the ODROID-C2

Android Development: So, You Want to Be an App Developer?
 April 1, 2018

So, you want to be an app developer? Let’s see what I can do to help you with that! A
casual survey of the back issues of ODROID Magazine has shown that there are plenty
of in-depth, detailed articles about Android on ODROID. What the community has been

missing is

Setting Up Your ODROID: ODROID-XU4 As A General Purpose NAS
 April 1, 2018

I wanted my ODROID-XU4 to do much more than being a plain old NAS, and I wanted
to keep using Ubuntu in order to bene�t from newer packages. This presents an
opportunity to gain new knowledge.

Meet An ODROIDian: Ernst Mayer, Mathematician Extraordinaire
 April 1, 2018

I’ve been living and working in Silicon Valley for roughly the last 20 years, doing
algorithmic and coding work �rst for several tech startups and then for larger �rms.
Most of that work was related to EDA software for chip design. Last year, the 4-5

months after buying my C2

HID Gadget Device: Using The ODROID-C2
 April 1, 2018 By @Ashren0 Linux, ODROID-C2, Tutorial

The following guide describes how to setup the
ODROID-C2 as a HID gadget device, in this case it will
be used as either a keyboard or a basic gamepad.

The following steps could be adapted for any another
device that

Support for USB OTG device mode

Has a Linux kernel at above version 3.19 with
FunctionFS HID module built, we will use Linux version
4.15.

Before we begin, it should be noted that every
command has to be run as root.

Figure 1 – The ODROID-C2 can act as an HID device using
USB OTG device mode

Preparation

The easiest method for running a recent kernel, for
now, is to use the ArchLinuxARM image at
https://archlinuxarm.org/platforms/armv8/amlogic/
odroid-c2. After following the instructions and having
botted into the default installation, update the system
to use the mainline kernel (4.15 at the time of writing):

$ sudo pacman Syu

$ sudo pacman R ubootodroidc2

$ sudo pacman S ubootodroidc2mainline

linuxaarch64 dtc

https://magazine.odroid.com/category/odroid-c2/
https://archlinuxarm.org/platforms/armv8/amlogic/odroid-c2

Make sure NOT to reboot the device yet if you are
booting from eMMC. The default mainline installation
above has some quirky defaults that render the
system read-only and disable the OTG module. We
must �rst disassemble the Device Tree Blob, or DTB,
�le used by the C2 for initializing onboard peripherals
into its source form the DTS

$ cd /boot/dtbs/amlogic/

$ sudo cp p mesongxbbodroidc2{,_backup}.dtb

$ sudo dtc I dtb O dts mesongxbb

odroidc2.dtb > mesongxbbodroidc2.dts

Once done, edit the source:

$ sudo nano mesongxbbodroidc2.dts

In the section [mmc@74000], change the following
line to re-enable write access to the eMMC (even if not
using eMMC now, it’s always good to change it):

maxfrequency = <0xbebc200>;

to:

maxfrequency = <0x8f0d180>;

And in the section [usb@c9000000], change:

dr_mode = "host";

to:

dr_mode = "peripheral";

usb@c9000000 is the OTG peripheral which is in
“host” mode by default here. Be careful not to touch
anything regarding usb@c910000 which is the 4-ports
USB hub. Once this is done, we can rebuild the DTB
�le and reboot:

$ sudo dtc I dts O dtb mesongxbb

odroidc2.dts > mesongxbbodroidc2.dtb

$ sudo reboot

We can check the running kernel with the following
command:

$ uname r

It should be 4.15+ and if everything worked �ne, the
following command should show a symbolic link
[c9000000.usb]:

$ ls /sys/class/udc/

Con�guration

Consider the following python3 script that performs
setup and teardown of the device automatically:

import sys

import os

import shutil

import pwd

import asyncio

import subprocess

import argparse

import atexit

class HIDReportDescriptorKeyboard(object):

def __len__(self):

return 8

def __bytes__(self):

return bytes([

 0x05, 0x01, # Usage Page (Generic Desktop

Ctrls)

 0x09, 0x06, # Usage (Keyboard)

 0xA1, 0x01, # Collection (Application)

 0x05, 0x07, # Usage Page (Kbrd/Keypad)

 0x19, 0xE0, # Usage Minimum (0xE0)

 0x29, 0xE7, # Usage Maximum (0xE7)

 0x15, 0x00, # Logical Minimum (0)

 0x25, 0x01, # Logical Maximum (1)

 0x75, 0x01, # Report Size (1)

 0x95, 0x08, # Report Count (8)

 0x81, 0x02, # Input (Data,Var,Abs,No

Wrap,Linear,Preferred State,No Null Position)

 0x95, 0x01, # Report Count (1)

 0x75, 0x08, # Report Size (8)

 0x81, 0x03, # Input (Const,Var,Abs,No

Wrap,Linear,Preferred State,No Null Position)

 0x95, 0x05, # Report Count (5)

 0x75, 0x01, # Report Size (1)

 0x05, 0x08, # Usage Page (LEDs)

 0x19, 0x01, # Usage Minimum (Num Lock)

 0x29, 0x05, # Usage Maximum (Kana)

 0x91, 0x02, # Output (Data,Var,Abs)

 0x95, 0x01, # Report Count (1)

 0x75, 0x03, # Report Size (3)

 0x91, 0x03, # Output (Const,Var,Abs)

 0x95, 0x06, # Report Count (6)

 0x75, 0x08, # Report Size (8)

 0x15, 0x00, # Logical Minimum (0)

 0x25, 0x65, # Logical Maximum (101)

 0x05, 0x07, # Usage Page (Kbrd/Keypad)

 0x19, 0x00, # Usage Minimum (0x00)

 0x29, 0x65, # Usage Maximum (0x65)

 0x81, 0x00, # Input (Data,Array,Abs,No

Wrap,Linear,Preferred State,No Null Position)

 0xC0, # End Collection

])

class HIDReportDescriptorGamepad(object):

def __len__(self):

return 4

def __bytes__(self):

return bytes([

 0x05, 0x01, # USAGE_PAGE (Generic Desktop)

 0x15, 0x00, # LOGICAL_MINIMUM (0)

 0x09, 0x04, # USAGE (Joystick)

 0xa1, 0x01, # COLLECTION (Application)

 0x05, 0x02, # USAGE_PAGE (Simulation

Controls)

 0x09, 0xbb, # USAGE (Throttle)

 0x15, 0x81, # LOGICAL_MINIMUM (127)

 0x25, 0x7f, # LOGICAL_MAXIMUM (127)

 0x75, 0x08, # REPORT_SIZE (8)

 0x95, 0x01, # REPORT_COUNT (1)

 0x81, 0x02, # INPUT (Data,Var,Abs)

 0x05, 0x01, # USAGE_PAGE (Generic Desktop)

 0x09, 0x01, # USAGE (Pointer)

 0xa1, 0x00, # COLLECTION (Physical)

 0x09, 0x30, # USAGE (X)

 0x09, 0x31, # USAGE (Y)

 0x95, 0x02, # REPORT_COUNT (2)

 0x81, 0x02, # INPUT (Data,Var,Abs)

 0xc0, # END_COLLECTION

 0x09, 0x39, # USAGE (Hat switch)

 0x15, 0x00, # LOGICAL_MINIMUM (0)

 0x25, 0x03, # LOGICAL_MAXIMUM (3)

 0x35, 0x00, # PHYSICAL_MINIMUM (0)

 0x46, 0x0e, 0x01, # PHYSICAL_MAXIMUM (270)

 0x65, 0x14, # UNIT (Eng Rot:Angular Pos)

 0x75, 0x04, # REPORT_SIZE (4)

 0x95, 0x01, # REPORT_COUNT (1)

 0x81, 0x02, # INPUT (Data,Var,Abs)

 0x05, 0x09, # USAGE_PAGE (Button)

 0x19, 0x01, # USAGE_MINIMUM (Button 1)

 0x29, 0x04, # USAGE_MAXIMUM (Button 4)

 0x15, 0x00, # LOGICAL_MINIMUM (0)

 0x25, 0x01, # LOGICAL_MAXIMUM (1)

 0x75, 0x01, # REPORT_SIZE (1)

 0x95, 0x04, # REPORT_COUNT (4)

 0x55, 0x00, # UNIT_EXPONENT (0)

 0x65, 0x00, # UNIT (None)

 0x81, 0x02, # INPUT (Data,Var,Abs)

 0xc0 # END_COLLECTION

])

class HidDaemon(object):

 def __init__(self, vendor_id, product_id,

manufacturer, description, serial_number,

hid_report_class):

 self._descriptor = hid_report_class()

 self._hid_devname = 'odroidc2_hid'

 self._vendor = vendor_id

 self._product = product_id

 self._manufacturer = manufacturer

 self._desc = description

 self._serial = serial_number

 self._libcomposite_already_running =

self.check_libcomposite()

 self._usb_f_hid_already_running =

self.check_usb_f_hid()

 self._loop = asyncio.get_event_loop()

 self._devname = 'hidg0'

 self._devpath = '/dev/%s' % self._devname

def _cleanup(self):

 udc_path =

'/sys/kernel/config/usb_gadget/%s/UDC' %

self._hid_devname

 if os.path.exists(udc_path):

 with open(udc_path, 'w') as fd:

 fd.truncate()

 try:

 shutil.rmtree('/sys/kernel/config/usb_gadget/

%s' % self._hid_devname, ignore_errors=True)

 except:

 pass

 if not self._usb_f_hid_already_running and

self.check_usb_f_hid():

 self.unload_usb_f_hid()

 if not self._libcomposite_already_running and

self.check_libcomposite():

 self.unload_libcomposite()

@staticmethod

def check_libcomposite():

 r = int(subprocess.check_output("lsmod | grep

'libcomposite' | wc l", shell=True,

close_fds=True).decode().strip())

 return r != 0

@staticmethod

def load_libcomposite():

 if not HidDaemon.check_libcomposite():

 subprocess.check_call("modprobe

libcomposite", shell=True, close_fds=True)

@staticmethod

def unload_libcomposite():

 if HidDaemon.check_libcomposite():

 subprocess.check_call("rmmod libcomposite",

shell=True, close_fds=True)

@staticmethod

def check_usb_f_hid():

 r = int(

 subprocess.check_output("lsmod | grep

'usb_f_hid' | wc l", shell=True,

close_fds=True).decode().strip())

 return r != 0

@staticmethod

def load_usb_f_hid():

 if not HidDaemon.check_libcomposite():

 subprocess.check_call("modprobe usb_f_hid",

shell=True, close_fds=True)

@staticmethod

def unload_usb_f_hid():

 if HidDaemon.check_libcomposite():

 subprocess.check_call("rmmod usb_f_hid",

shell=True, close_fds=True)

def _setup(self):

f_dev_name = self._hid_devname

os.makedirs('/sys/kernel/config/usb_gadget/%s/

strings/0x409' % f_dev_name, exist_ok=True)

os.makedirs('/sys/kernel/config/usb_gadget/%s/

configs/c.1/strings/0x409' % f_dev_name,

exist_ok=True)

os.makedirs('/sys/kernel/config/usb_gadget/%s/

functions/hid.usb0' % f_dev_name,

exist_ok=True)

with

open('/sys/kernel/config/usb_gadget/%s/idVendo

r' % f_dev_name, 'w') as fd:

fd.write('0x%04x' % self._vendor)

with

open('/sys/kernel/config/usb_gadget/%s/idProdu

ct' % f_dev_name, 'w') as fd:

fd.write('0x%04x' % self._product)

with

open('/sys/kernel/config/usb_gadget/%s/bcdDevi

ce' % f_dev_name, 'w') as fd:

fd.write('0x0100')

with

open('/sys/kernel/config/usb_gadget/%s/bcdUSB'

% f_dev_name, 'w') as fd:

fd.write('0x0200')

with

open('/sys/kernel/config/usb_gadget/%s/strings

/0x409/serialnumber' % f_dev_name, 'w') as fd:

fd.write(self._serial)

with

open('/sys/kernel/config/usb_gadget/%s/strings

/0x409/manufacturer' % f_dev_name, 'w') as fd:

fd.write(self._manufacturer)

with

open('/sys/kernel/config/usb_gadget/%s/strings

/0x409/product' % f_dev_name, 'w') as fd:

fd.write(self._desc)

with

open('/sys/kernel/config/usb_gadget/%s/configs

/c.1/strings/0x409/configuration' %

f_dev_name, 'w') as fd:

fd.write('Config 1 : %s' % self._desc)

with

open('/sys/kernel/config/usb_gadget/%s/configs

/c.1/MaxPower' % f_dev_name,'w') as fd:

fd.write('250')

with

open('/sys/kernel/config/usb_gadget/%s/functio

ns/hid.usb0/protocol' % f_dev_name, 'w') as

fd:

fd.write('1')

with

open('/sys/kernel/config/usb_gadget/%s/functio

ns/hid.usb0/subclass' % f_dev_name, 'w') as

fd:

fd.write('1')

with

open('/sys/kernel/config/usb_gadget/%s/functio

ns/hid.usb0/report_length' % f_dev_name, 'w')

as fd:

fd.write(str(len(self._descriptor)))

with

open('/sys/kernel/config/usb_gadget/%s/functio

ns/hid.usb0/report_desc' % f_dev_name, 'wb')

as fd:

fd.write(bytes(self._descriptor))

os.symlink(

'/sys/kernel/config/usb_gadget/%s/functions/hi

d.usb0' % f_dev_name,

'/sys/kernel/config/usb_gadget/%s/configs/c.1/

hid.usb0' % f_dev_name,

target_is_directory=True

)

with

open('/sys/kernel/config/usb_gadget/%s/UDC' %

f_dev_name, 'w') as fd: fd.write('

'.join(os.listdir('/sys/class/udc')))

def run(self):

if not self._libcomposite_already_running:

self.load_libcomposite()

atexit.register(self._cleanup)

Setup HID gadget (keyboard)

self._setup()

Use asyncio because we can then do thing on

the side (web ui, polling attached devices

using pyusb ...)

try:

self._loop.run_forever()

except KeyboardInterrupt:

pass

if __name__ == '__main__':

user_root = pwd.getpwuid(0)

user_curr = pwd.getpwuid(os.getuid())

print('Running as <%s>' % user_curr.pw_name)

if os.getuid() != 0:

print('Attempting to run as ')

sys.exit(os.system("/usr/bin/sudo /usr/bin/su

root c '%s %s'" % (sys.executable, '

'.join(sys.argv))))

parser = argparse.ArgumentParser()

parser.add_argument('hid_type', choices=

['keyboard', 'gamepad'])

args = parser.parse_args()

if args.hid_type == 'keyboard':

print('Emulating: Keyboard')

Generic keyboard

hid = HidDaemon(0x16c0, 0x0488, 'author',

'ODROID C2 KBD HID', 'fedcba9876543210',

HIDReportDescriptorKeyboard)

hid.run()

elif args.hid_type == 'gamepad':

print('Emulating: Gamepad')

Teensy FlightSim for the purpose of this

example (and since it's intended for DIY, it

fits ou purpose)

hid = HidDaemon(0x16c0, 0x0488, 'author',

'ODROID C2 GAMEPAD HID', 'fedcba9876543210',

HIDReportDescriptorGamepad)

hid.run()

The classes HIDReportDescriptorKeyboard and
HIDReportDescriptorGamepad are where we describe
our device such as its type, buttons, and axis count.
Note that the vendorId and productId are also
important since even if you describe your device as a
gamepad, if the VID/PID are those of a keyboard, the
operating system will most likely identity it as a
keyboard.

Next, run the following command, which requires root
privileges, in order to create a /dev/hidg0 device to
which you can freely write:

$ sudo python3 script.py keyboard

or

$ sudo python3 script.py gamepad

We can then test it with the keyboard argument:

$ sudo sleep 5 && echo ne "" > /dev/hidg0 &&

echo ne "" > /dev/hidg0

This command will write “A” (or “Q” if your use an
azerty layout), after 5 seconds. Now, to test it with the
gamepad argument use:

$ sudo sleep 5 && echo ne "�" > /dev/hidg0

&& echo ne "" > /dev/hidg0

This will trigger the fourth button on the gamepad
device.

Making di�erent devices

The two examples use very basic descriptors which
use the following bit format when writing to
/dev/hidg0:

Keyboard (6-rollover)

BYTE
1

BYTE
2

BYTE
3

BYTE
4

BYTE
5

BYTE
6

BYTE
7

BYTE
8

Modi
�ers

Rese
rved

Key
1

Key
2

Key
3

Key
4

Key
5

Key
6

Gamepad

BYTE 1 BYTE 2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Throttle (-127 to 127) X-Axis (-127 to 127)

BYTE 4

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Y-Axis (-127 to 127) B
4

B
3

B
2

B
1

(1) (2)

(1)When equals to 0b11 the HAT buttons are all set to
non active, which should be a default. (2)HAT buttons
bit-mask, given that bits 5-6 are set to 0 (a)0b00 => UP
(b)0b01 => RIGHT (c)0b10 => DOWN (d)0b11 => LEFT

Conclusion

This is just a very basic example but it shows the
options available to us. Delving deeper into the HID
and USB speci�cations should make for plenty of use
cases:

Simulating a device, such as a speci�c keyboard,
gamepad, mouse for development purposes.

Making a device appear as another. For legacy devices.

Pure USB debugging / reverse engineering (USBProxy
project at https://github.com/dominicgs/USBProxy).

Penetration testing.

And surely many others I didn’t think of.

For comments, questions, and suggestions about the
HID gadget, please visit the original thread at
https://forum.odroid.com/viewtopic.php?
f=139&t=30267.

Sources

USB HID 1.1 specs
http://www.usb.org/developers/hidpage/HID1_11.p
df

Where if found the key scancodes for the keyboard
https://gist.github.com/MightyPork/6da26e382a7ad
91b5496ee55fdc73db2

To better understand report descriptors
https://hamaluik.com/posts/making-a-custom-
teensy3-hid-joystick/ and
http://eleccelerator.com/tutorial-about-usb-hid-
report-descriptors/

Tool for making descriptors (pretty clunky but o�cial)
http://www.usb.org/developers/hidpage#HID%20De
scriptor%20Tool

Keyboard report descriptor http://isticktoit.net/?
p=1383

Utility to check report descriptors
http://eleccelerator.com/usbdescreqparser/

OTG peripheral DTB modi�cation
https://community.nxp.com/thread/383191

C2 mainline kernel support (frequency tweaks)
https://forum.odroid.com/viewtopic.php?
f=135&t=22717

https://github.com/dominicgs/USBProxy
https://forum.odroid.com/viewtopic.php?f=139&t=30267
http://www.usb.org/developers/hidpage/HID1_11.pdf
https://gist.github.com/MightyPork/6da26e382a7ad91b5496ee55fdc73db2
https://hamaluik.com/posts/making-a-custom-teensy3-hid-joystick/
http://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/
http://www.usb.org/developers/hidpage#HID%20Descriptor%20Tool
http://isticktoit.net/?p=1383
http://eleccelerator.com/usbdescreqparser/
https://community.nxp.com/thread/383191
https://forum.odroid.com/viewtopic.php?f=135&t=22717

Shinobi Closed Circuit TV (CCTV): Creating a Video Monitoring
System Using the ODROID-HC2
 April 1, 2018 By Dylan Tutorial, ODROID-HC2

It is my pleasure to share my experience creating a
home CCTV video monitoring system using the
ODROID-HC2 and Shinobi CCTV software. Hopefully
this helps someone out there who is looking to have a
video monitoring system of their own.

Figure 1 – Shinobi CCTV Dashboard

In my opinion, traditional home alarm systems
generally just cause a nuisance for neighbours, and
they must be armed to be e�ective. In comparison, a
CCTV system is quiet, but also provides records, which

in my experience is a more e�ective deterrent to
potential criminals. A good CCTV system records 24/7
and �ags motion events.

Other bene�ts of a CCTV system include, its
usefulness in telling you when packages have been
delivered to the front door; lets you know who is at
the door; and monitor the BBQ smoker outside while
playing video games inside.

Warnings and Disclaimer

To honor others’ privacy, install cameras with only a
view of your property, and not that of the
neighbour’s. It is also wise to review your local rules to
understand any additional requirements covering
signage, restrictions on audio recording, and such.
Although I only recommend installing the cameras
outside your home, one exception may be to use a
camera internally as a baby monitor. However, as one

https://magazine.odroid.com/category/odroid-hc2/

of my friends found, it is important to make sure your
access/security to this camera is watertight!

System fundamentals

Structured Cabling in the form of wired CAT6 or better
will provide robust, secure communications for your
CCTV system. I installed 20 ethernet outlets
throughout my home with eight in the ceiling void for
the purpose of connecting cameras. Structured
cabling is normally something installed by an
electrician, but with patience and research you can
safely do this yourself. Numerous online resources
are available to research the topic.

Figure 2 – Structured Cabling

Cameras are of two types: analog or digital. Analog
cameras need more hardware to operate on a
network based system. For video monitoring, I prefer
digital cameras as they connect using ethernet, o�er
�exible con�guration and generally cost the same if
not less. I chose cameras powered over ethernet (PoE)
which means I can provide power and
communications over CAT6. The open standard for
network cameras is ONVIF (https://www.onvif.org). I
recommend ONVIF compatible cameras, such as
Foscam FI9853EP, to mitigate compatibility issues.

Figure 3 – Example Camera Install

ODROID-HC2 Setup

The ODROID-HC2 is perfectly suited for my CCTV
video monitoring system. It o�ers gigabit network
speed, 3.5” or 2.5” HDD/SDD native SATA interface
and no unnecessary bells or whistles. I want to store
footage for at least 30 days using inexpensive hard
drive storage media.

I Initialised the ODROID-HC2 using the latest ODROID-
XU4 Ubuntu minimal OS Image. Flash the image onto
a microSD using WinDiskImager, then insert into the
ODROID along with an ethernet connection and 3.5”
hard-drive. Power up with a compatible 12 volt PSU. It
took about 2 minutes to initialise the ODROID and on
the next boot it had SSH access over a DHCP assigned
IP.

Apply any available updates:

$ sudo aptget update

$ sudo aptget upgrade

$ sudo aptget distupgrade

Mount the hard-drive. The hard-drive should show up
as /dev/sda but run the following command to check:

$ sudo fdisk l

The following assumes the hard drive shows as
/dev/sda. Create a single partition using fdisk.
Reference fdisk documentation for partitioning the
drive.

$ sudo fdisk /dev/sda

After you have a partition, format the partition:

$ sudo mkfs.ext4 /dev/sda

The ODROID-HC2 only has space for a single hard
drive. As such, I just mount the disk referencing
/dev/sda. You can mount using the UUID if you prefer.
Add the following line to fstab:

$ sudo nano /etc/fstab

/dev/sda /media/CCTV ext4 defaults 0 2

The following script helps park the hard drive on
shutdown. Download and install the script:

$ wget

https://dn.ODROID.com/5422/script/ODROID.shutd

own

$ sudo install o root g root m 0755

./ODROID.shutdown /lib/systemd/system

shutdown/ODROID.shutdown

I shared the entire hard drive using Samba. This gives
me the option to retrieve recordings over a network
share.

$ sudo aptget install samba sambacommonbin

Next, con�gure Samba:

$ sudo nano /etc/samba/smb.conf

#===== Share Definitions =====

[CCTV]

comment = CCTV

path = /media/CCTV/

browsable = yes

writable = yes

guest ok = yes

read only = no

Restart the device and ensure you can read/write to
the hard drive.

Shinobi Setup

Use the install script to install Shinobi CCTV and
associated prerequisites:

$ sudo aptget install curl

$ bash <(curl s

https://raw.githubusercontent.com/ShinobiCCTV/

ShinobiInstaller/master/shinobiinstall.sh)

Install all dependencies. I chose the Shinobi Pro
branch with the remaining options as defaults. Access
the Shinobi administrator view using accessing the
link: https://[your-ODROID-HC2-ip]:8080/super on
your browser.

Then, add a new account, add the hard-drive to the
con�guration and save it:

"addStorage": [

 {

 "name": "second",

 "path": "/media/sda/CCTV"

 }

You may also want to change the email settings, API
keys and Shinobi superuser password.

Now login to the primary Shinobi CCTV interface in
your browser at https://[your ODROID]:8080 using the
new account. Click on the plus [+] symbol with a
tooltip ‘Add Monitor’. Con�gure your camera as
follows (your ideal settings may vary):

Identity

Mode: Record

Monitor ID: (leave default)

Name: (i.e. Front Door)

Retry Connection: 0

Storage Location: second

Input

Input Type: H264 (or that supported by your

camera)

Connection Type: RSTP

RTSP Transport: UDP

Username: (Camera login)

Password: (Camera password)

Host: (Camera IP)

Port: (Camera RTSP Port)

Force Port: No

Path: (RSTP Path)

Analyzation Duration: 100000

Probe Size: 100000

Accelerator: No

Stream

Stream Type: FLV

FLV Stream Type: Websocket

Max Latency: 20000

Video Encoder: Copy

Audio Encoder: No Audio

TV Channel: No

Stream Timestamp

Enabled: No

Stream Watermark

Enabled: No

JPEG API Snapshot (cgibin)

Enabled: No

Recording

Record File Type: MP4

Video Codec: Copy

Audio Codec: No Audio

Double Quote Directory: No

Recording Segment Interval: 15

Custom

(leave blank)

Logging

Log Level: (set to silent once camera is

stable)

Save Log in SQL: No

You will need to review your camera setup manual to
establish options. The JPEG API should work for most
cameras, but unfortunately not mine. I prefer UDP for
camera streams. If you plan to stream over the
internet or route through a busy LAN, choose TCP.

HTTP Live Streaming (HLS) is supposed to be superior
to Flash Video (FLV) streaming but I could not make it
display smoothly.

There are many more customizations for Shinobi. You
can con�gure a motion detector, email alerts and
customer scripting to name a few. I found the
following Shinobi pages useful:

https://goo.gl/47M2Ty
https://shinobi.video/docs/cameras
https://goo.gl/kvKax1

You will need to setup port-forwarding or other
methods to view Shinobi over the internet. I was able
to view all streams smoothly at from a friend’s place.
Viewing live streams on a mobile phone however
seems to be problematic but recording playback is
�awless. I expect that mobile phone live view should
improve with tweaking or future updates.

Figure 4 – Shinobi CCTV Power Viewer

I am capturing and recording 6 cameras at 720p 2M
15fps. My ODROID-HC2 sits between 1% to 5% CPU
and 36% memory use. So far the system has run
stable for 2 weeks with no signs of degrading. No
crashes, reboots or other abnormal behaviour. It took
a few days of trial and error to get the system running
the way I like.

For comments, questions, and suggestions, please
visit the original article at https://goo.gl/tJprLA.

https://goo.gl/47M2Ty
https://shinobi.video/docs/cameras
https://goo.gl/kvKax1
https://goo.gl/tJprLA

Portable Sound Studio: Record Music with an ODROID-XU4Q
Anytime, Anywhere
 April 1, 2018 By Stephen Baldassarre Linux, ODROID-XU4

Stephen Baldassarre is a drummer working in two
active bands who does video and �lm production.
More importantly, he is also the engineer for Golden
Clam Machine Studio in Boise, Idaho. Clients include
Steve Schwarz of the metal band Pyrael and the non-
pro�t organization Story Story Night. Stephen recently
posted a Youtube video about his somewhat unusual
recording rig, which is what piqued ODROID
Magazine’s attention about his setup.

Figure 1 – An ODROID-XU4Q recording voice-over via USB
interface

Hardware requirements

ODROID-XU4Q

40mm 5V fan

ODROID-VU7

5V/6A US Power Supply

ODROID-XU4 clear case

SanDisk 64GB MicroSD system drive

SanDisk 64GB USB drive (for recording small track
counts)

USB3.0 to SATA Bridge Board Plus with SanDisk 240GB
SSD (for recording large track counts)

Plexiglass sheet

4 x small zip-ties to hold it all together

Software requirements

Ubuntu (ubuntu-16.04.3-4.14-mate-odroid-xu4-
20171212)

JACK Audio Connection Kit – Qt GUI V0.4.2: 4/7/2016

Ardour 4.6.0 “Evening Star”

Stephen, why did you make this?
I use computers for audio and video production on a
daily basis but try to rely on dedicated solutions as
much as possible. Unfortunately, there is a lack of
inexpensive hardware systems in today’s market that
can handle the variety of live recordings that make up
the majority of my business. I have been using the M-
Audio Fast Track Ultra (https://goo.gl/bpx3Ly), an USB
interface with six analogue inputs, with a laptop
computer running Sony Vegas for smaller live
recording projects like ‘Story Story Night’, which is
largely speech with some live music in between story
tellers. Every show is recorded, mixed and uploaded
to various streaming services for all to hear. I do not
like bringing my laptop to shows because there’s a lot
of things that can go wrong, including Microsoft
Windows-related glitches or theft. For more
demanding shows, like a 3-hour rock concert, I have
been taking my HD24, which is much more reliable
and has more audio inputs than the Fast Track.
However, I have to gut my studio and re-patch my PA
system to take it on the road. I began wondering if I
could make a sort of modular system to cover all my
live recording needs and maybe starting a cottage
industry of making/selling them. I thought some kind
of single-board computer might be able to handle this
task. I could not �nd any examples on the internet of
anybody doing it, so I just took a chance on the
ODROID-XU4Q, due to its better speci�cation.

What hardware did you use?
I sort of worked backwards on that. My colleague
Steve Schwarz, an avid GNU/Linux fan, has been

suggesting I try Ardour for years. Ardour 4 requires at
least 2GB of RAM, so that eliminated most other SBCs.
I liked the idea of a passive heat sink: quiet operation,
less power, less chance of failure. I did not want to
deal with a mouse and keyboard on-location, so a
touch screen was the obvious solution. I chose the
ODROID-VU7 as I wanted a somewhat larger screen
and did not feel like the resolution was particularly
important. I was not going to mix on it; I just wanted
to record directly to an USB drive and later move the
�les to my studio computer or HD24 to start mixing.
Obviously, an USB drive would not handle a lot of
tracks, so I also got a USB3 to SATA adapter with
240GB SSD for larger shows.

Figure 1 – Back of XU4Q with fan and SSD sandwiched
between Plexi layers

How did you create the setup?
I was not sure what kind of power requirements I
would have, so I opted for a 5V 6A power supply. Most
Ardour users seem to use Ubuntu, so the OS was
actually the last decision I made. I copied an Ubuntu
16.04 image to a MicroSD card I already had. I had
some Plexiglass left over from an unrelated project,
so I cut out a rectangle the size of the VU7 and used
the supplied stando�s and screws to mount the
Plexiglass to it. I drilled some holes in the back, the
same size and spacing as the feet on the ODROID-
XU4’s case, then strapped the ODROID-XU4Q in place
with a couple pairs of zip-ties. Channels were cut into
the Plexiglass with a small �le to keep the zip-ties
from sliding. The ODROID-XU4Q is o�-set so it acts as
a stand for the screen, holding it at an angle if I set it
on a table. It looks a little funny but it lets me take
everything apart very quickly if needed.

https://goo.gl/bpx3Ly

Figure 2 – Back of VU7 showing makeshift mounting
plate

How do you use your portable studio?
Initially, the Fast Track lived in the back of my PA all
the time, with various outputs from my audio mixer
feeding into it. For most shows, I put the main voice
on input-1, and all other voices on input-2.
Instruments are sub-mixed to stereo and fed to 3-4
while audience mics are 5-6. Most of my clients work
on extremely tight budgets. Like with SSN, I only have
2 ½ hours of clock time to turn a 2-hour show into two
45-minute podcasts. I have become rather adept at
getting good mixes on the �y, but it is always best to
keep the vocals separate. The audience mics, which
are useless for the live sound, were fed directly to the
interface.

Figure 3 – 400 guests �nd seats at “Story Story Night”

What I am usually doing o�-late is using a Behringer
X18 digital mixer with USB interface capabilities. That
lets me record 6-track sub-mixes for small jobs but I
can have up to 16 independent tracks if I want them,
all without recon�guring anything. I have also tested
up to 26 tracks from an X32, a 32-channel digital
mixer with mixed (no pun intended) results. Needless
to say, I am glad I got in the habit of having a backup

recording system at every show:
https://www.youtube.com/watch?v=4TVOxfPE2ps.

Figure 5 – The Fabulous Chancellors needs a lot of tracks
but one tiny computer

What problems did you encounter during the build and
how did you solve them?
I had no experience with SBCs or Linux before this
project, so I could not have done it without the help of
Steve Schwarz. He lives in New York, so getting advice
required patience. Incidentally, I came up with this
Ubuntu/Ardour recording system because of his
suggestions and he put an HD24 and analogue
console in his studio because of me. Anyway, I did not
know that everything important happens through the
terminal when I got started. The only command I
really needed to know, though, was:

$ sudo aptget install ardour

I am so glad that Ardour 4 was in the Ubuntu
repository so it would just download and install along
with all its dependencies. Getting it working properly
took some experimentation. I discovered that Ardour
did not like being installed if I updated the OS, so I left
it as the stock “ubuntu-16.04.3-4.14-mate-odroid-xu4-
20171212” install.

The ODROID-XU4Q has a tendency to overheat and
crash when recording many tracks at a time. Adding a
fan to the ODROID-XU4Q’s oversized heat sink helps
immensely. It is very sensitive to static electricity, so I
need to �gure out some kind of shielded housing. In

https://www.youtube.com/watch?v=4TVOxfPE2ps

the meantime, I have gotten in the habit of grounding
myself before touching it during recording sessions.

With the Fast Track, the main outputs are disabled
and the alternate outputs are drowned in reverb. It is
possible to do overdubs (record more tracks later) but
I do not recommend it. This seems to be an
intentional handicap when not using M-Audio’s
proprietary drivers.

JACK is very important with the Fast Track because
Ardour will not connect directly to the ALSA drivers in
this case. JACK must be opened and started for
Ardour to connect. Ardour will not start JACK
automatically, and cannot be set to “real time” or
Ardour will not open or create sessions. It’s also
important to make sure sample rates match before
running Ardour. If using a digital mixer, Ardour must
match the mixer’s internal clock before connecting.

JACK is not necessary with the Behringer digital
mixers, and only the Fast Track Ultra, X18 and X32
were tested.

Since adding a fan, I have bench tested the ODROID-
XU4Q recording 16 tracks for two hours straight
without issue. Before adding the fan, the heatsink was
hot to the touch after �ve minutes. With the fan, it
stays in low-speed about 2/3rds of the time with brief
bursts of higher speed and the sink feels cool. CPU
and memory usage are fairly minimal so I do not
doubt it can record 32 tracks at a time for sustained
periods. If I have one real regret with this project, it is
that I should have spent the extra $25 on the 8” high-
res screen because many program windows don’t �t
in the 800×480 space. I will likely get a larger screen
soon.

Linux Gaming: Saturn Games – Part 3
 April 1, 2018 By Tobias Schaaf Gaming, ODROID-XU4

We are back with this month’s look at Sega Saturn
games for the ODROID-XU3/XU4. Last time I talked
about a lot of shoot ‘em ups, but this article has a
good mix of di�erent genres, although I did pick quite
a few “mecha” games I enjoy. Since this is the most
games I’ve covered in a single article so far, I’ve made
an e�ort to keep each description shorter this time.

Although these games were tested on the ODROID-
XU3/XU4, they should work just as well, if not better,
on the upcoming ODROID-N1 as well. My initial tests
for the ODROID-N1 were quite good, so it’s no
surprise that the N1 handles Sega Saturn emulation
well.

Macross – Do you remember Love

What I really stands out for me in this game are the
amazing anime cutscenes. These are not your regular
JRPG-styled cutscenes like in Popfull Mail; they’re
straight out of the Japanese anime series Macross
itself. The scenes are incredibly detailed, making it

hard to believe you’re watching a cutscene in a game
and not the actual anime.

Similar cutscenes can be found within the game itself:
when you encounter a boss and when the screen
shows an anime-style conversation between your
character and the boss. The game is completely in
Japanese, but it doesn’t interfere with enjoyment of
the game, although you might miss some minor plot
elements.

In this game you �y a transformable aircraft which
can be turned into a mecha. Each stage has its
advantages and disadvantages. Aircraft mode is very
fast and easy to maneuver, but your weapons are
somewhat weaker. Changing into a mecha
strengthens your attacks, but you become slower,
more sluggish in your movements, bigger, and with
that easier to hit. Fighting through di�erent stages,
your form can be limited to one or two of the three
options depending on your stage.

https://magazine.odroid.com/category/odroid-xu4/
https://www.youtube.com/watch?v=UhpdTJ9u-5E&t=3m

Figure 1 – Macross has three �ghter stages, each with
their own strengths and weaknesses

Figure 2 – Macross has three �ghter stages, each with
their own strengths and weaknesses

Figure 3 – Macross has three �ghter stages, each with
their own strengths and weaknesses

You also have three di�erent weapons: auto-aiming
missiles which you load and auto-target by holding a
button, a fast machine gun, and a bomb that covers
most of the screen, which helps you if you’re
surrounded by enemies. As the enemies come at you
in three planes (foreground, middleground, and
background), the auto-aiming missiles are likely going
to be your main attack.

The game allows you to save your game progress to
the system memory. This is one of the few games that
actually �ts into the system memory, without
complaining that the system memory has not enough
space. The game is a good, solid shooter that’s fun to
play and the anime cutscenes are simply amazing.

Magic Knight Rayearth

This game is based on an anime of the same name
about three school girls who are transported to a
magical world where the girls are told they are the
Magic Knights and are suppose to save the world. The
game starts with a long intro that features a mix of
anime cutscenes, in-game graphics, and a lot of
dialogue.

Magic Knight Rayearth was translated by Working
Designs, a company that spent many years to porting
Japanese games to the North American market and
doing a incredible job, with accurate translations and
without monotone voice acting. This was the last

game they ever ported for Sega and the last o�cial
North America release for the Sega Saturn.

The game plays like an action-RPG similar to The
Legend of Zelda or Beyond Oasis. You control the
movements of all three girls at the same time, but
only one is active. Hikaru (red girl) is part of a kendo
club and uses a sword which is kind of short and hard
to handle. Umi (blue girl) is part of a fencing club and
uses a longer rapier for her attacks. Fuu (green girl) is
part of an archery club and �ghts with a bow. They
can also use magic: Hikaru possesses �re-based skills;
Umi is skilled with water; and Fuu uses wind-based
skills and healing spells.

Figure 4 – The three main characters of Magic Knight
Rayearth, starting o� on their adventure

The dialog in the game is well written, with voice-
overs in some parts of the game. Every now and then
you’ll encounter new people or situations, and with
that, you are treated to another nice anime cutscene.
All in all, this is a fun game to play. Roaming through
di�erent dungeons, you’re �ghting lots of monsters
while trying to �nd hidden treasures. Occasionally you
�nd items that upgrade your health or magic, but
each item only works once, so make sure you think
about which girl is going to take it.

I like the bright colors and understandable gameplay.
I also like that you can save your game process
wherever you want and are encouraged to do so. The
translation was well done, making this game a
masterpiece for the Sega Saturn. I haven’t played
much of this game, but I’ve seen a lot that I liked and I

plan to keep playing for quite a while. You should
de�nitely check this game out.

Figure 5 – Arriving at Presea’s home to get your �rst
weapons

Figure 6 – On the way back from your �rst mission to
gather Escudo

Mega Man 8–Anniversary Edition

I’m not a huge fan of the Mega Man series, but of all
the games in this series I have played, this is probably
the one I like the most. When it comes to graphics, I
like good comic-style games. Games like Monkey
Island 3, or Mega Man 8 are timeless due to their
graphic style. They looked awesome back then and
they still look awesome today. If you like 2D games
this is as good as it gets. Although the game also
exists for the PlayStation One, the Saturn version
o�ers better music (PCM VS Midi), additional bosses
(Cut Man and Wood Man), additional artworks, and so

forth. The PS1 version also su�ered from some minor
graphical glitches.

Figure 7 – The level select menu in Mega Man 8

From the level selection screen you can go to di�erent
worlds �ght and di�erent enemies and bosses. If you
defeat them you get their powers to use against other
enemies, same as all the Mega Man games. From the
level selection screen you can also go “home” where
you can exchange collected “screws” for special
upgrades, such as di�erent attack styles and other
goodies.

Figure 8 – Upgrade-screen for Mega Man

Some of these upgrades make a big di�erence. A
charged attack that no longer hits just one enemy but
all enemies in line sounds like something I’d like to
have. Mega Man 8 o�ers di�erent level with di�erent
enemies, graphic style, and challenges.

Figure 9 – There are di�erent levels in Mega Man 8, such
as up in the sky

Figure 10 – There are di�erent levels in Mega Man 8,
including inside a machine dungeon

Figure 11 – No Mega Man game is complete without boss
battles!

Generally, this game is a fest of colors and beautifully
drawn graphics. The awesome soundtrack just
completes this wonderful experience. I highly
recommend this Sega Saturn game for the ODROID-
XU3/XU4/N1.

Mobile Suit Gundam Side Story I, II, and III

I’ve always said the Sega Saturn wasn’t made for 3D
games and that developers should have stuck with 2D
games. Boy, was that a lie!

It’s true that there are many consoles with better 3D
capabilities than Sega Saturn, but the Saturn had its
gems: games that made the most out of what the
console had to o�er, while still keeping up speed and
playability. The Gundam series certainly �ts that
description.

Figure 12 – The 3D graphics in Mobile Suit Gundam Side
Story are surprisingly good for the Sega Saturn

My �rst Gundam 3D game was actually for the Sega
Dreamcast. I instantly fell in love with it, but seeing
the games for the Sega Saturn, I’m positive I would
have also enjoyed them as a �rst experience. I
de�nitely enjoy them now and I was surprised how
well they played on my ODROID. I enjoy this game a
lot, even if it’s sometimes hard to �gure out the goal,
as the game is completely in Japanese. Still, the
gameplay is easy enough to understand and you can
get into the action right away.

Figure 13 – Target an enemy and pound him until he’s
destroyed

Use your Gundam to hunt down di�erent enemies
using a machine gun, your cannon, area weapon (like
a grenade or missile), or a sword. I have to admit I
haven’t entirely �gured out how to make the sword

work yet. The mission brie�ng is a little bit hard to
understand since it’s in Japanese. It’s fully voiced,
which is nice, but I don’t understand a word of it.

The �rst game in the series has a very minimal
mission interface. You get an overall map but rarely
see any mission points so it’s hard to �gure out your
goal. From the second game, the information screen
gets a little bit more talkative and you can �gure out
from the icons, arrows, and blinking objects what
your goal is gonna be.

Figure 14 – Your mission map in Mobile Suit Gundam 2
and 3, which you see before each mission

Each level involves �ghting di�erent kinds of enemy
Mecha/Gundam and an occasional harder boss that
you need to defeat or scare o�. These bosses can be
really challenging as they move very quickly and may
be hard to hit with your main cannon. Over the
course of the game, and from one game of the series
to the next, your Gundam will change, gaining better
weapons that allow you to deal more damage and
travel faster as you progress.

Figure 15 – New boss approaching…cutscenes are all in
in-game graphics

Figure 16 – Quick overview of your Gundam and its
system

I really enjoy playing this game on the ODROID and
highly recommend it to anyone that likes a good
action game.

Mobile Suit Z Gundam

Yes, this is another Gundam game, and not the last
one, as there is one more in the honorable mention
section. However, this one is di�erent than the
previous ones. It’s not a 3D game, but 2D, which is
closer to the Macross game mentioned earlier.

Mobile Suit Z allows you to switch your Gundam
between a robot-style and a aircraft-style. Similar to
Macross, your aircraft is faster and shoots quicker,
but the Gundam is much more powerful, with access

to additional attacks and weapons such as the ability
to aim at background and foreground enemies, and a
very strong and fast saber to kill your enemy.

Figure 17 – Aiming at an enemy in the background only
works in Gangnam–erm–“Gundam-Style”

Compared to the previously-mentioned Gundam
games, this game is �lled with anime cutscenes. Intro,
before missions, after missions and even sometimes
during missions you have anime cutscenes which �t
the scenario quite well. Compared to Mobile Suit Z
Gundam Zenpen Z no Kodou, this version is much
easier to control as all your actions are mapped to
di�erent buttons, making it very easy to switch
between attacks or aim at enemies in the background
while slicing up enemies in the mid-ground.

Figure 18 – Slicing up some enemies with your saber is
always rewarding and fun to look at

At the end of a stage you’ll often encounter a boss
which can take a lot more damage than other random
enemies that are thrown at you all the time. I like is
that there is always a conversation going on between
the characters which makes it feel like you are right
there in the moment.

Figure 19 – Before each boss �ght there is a cutscene
featuring you and your enemy

In the upper left corner of the screen there are two
bars: “Energy”, which is your health, and “Armor.” The
latter regenerates over time so taking a few hits is not
that bad. After each stage a progress screen shows
you how well you did and how your character and
Gundam improved. Over time, you’ll get a lot
stronger, take more hits, regenerate a lot faster, and
aim at more enemies at once. As usual, the game is
done entirely in Japanese, but the gameplay is easy
enough to understand.

Pocket Fighters

This game is best played with the 4MB memory
expansion. It features many animated clips, and the
extra memory helps to improve the animations. If you
compare the Sega Saturn with the PS1, the two
versions of Pocket Fighters are very close, but the
Sega Saturn still has a bit more animations here and
there, and an “Around the World” kick that is not
present in the PS1 version. However, the PS1 version
is available in English, while Saturn is Japanese only,
although this doesn’t really a�ect the game. Since the
Sega Saturn version runs very well on the XU3/XU4 (or

ODROID-N1) it’s up to you which version you want to
play.

Figure 20 – Originally you only see three male characters
(see picture in the middle) but when you go to the left or
right of either Ruy or Ken you’ll �nd two more “hidden”
characters to choose from

Figure 21 – Originally you only see three male characters
(see picture in the middle) but when you go to the left or
right of either Ruy or Ken you’ll �nd two more “hidden”
characters to choose from

Figure 22 – Originally you only see three male characters
(see picture in the middle) but when you go to the left or
right of either Ruy or Ken you’ll �nd two more “hidden”
characters to choose from

This game plays like most �ghting games, but with a
fun “chibi” character style. During some combos the
characters change their costumes numerous times,
making the game look quite funny. It’s de�nitely not a
�ghting game that takes itself too seriously, giving it a
unique style.

Figure 23 – A treasure chest with gems inside stands
between the �ghters at the start of each �ght

This game is also known as “Super Gem Fighters” on
arcade machines. This name refers to you collect
gems during �ghts either by opening a treasure chest
or hitting the enemy.

Figure 24 – The gems you earn from �ghting give the
game its second name: Super Gem Fighters

Figure 25 – The gems you earn from �ghting give the
game its second name: Super Gem Fighters

If you’re able to hit a successful combo, the enemy
will drop a treasure chest which has several gems of
di�erent size inside. This is probably probably one of
my favorite �ghting games, regardless of the system.

Robo Pit

This is another 3D Sega Saturn game that doesn’t
disappoint. The graphics aren’t all that great, in fact,
they are rather simple, but I think that is what actually
saves this game. It runs rather well, but I don’t think
it’s actually running at full spee, but it’s very playable
and you probably won’t notice that it’s a bit slow.

In this game, you can build your own robot and use it
to �ght other robots in an arena (I guess that’s why it’s

called Robo Pit in the �rst place). Your robot is
customizable with a wide range of di�erent body
types, legs (for driving, jumping, or even �ying), arms
(which hold di�erent weapons), and even eyes.

Figure 26 – The game menu is very simplistic, but it
allows you to access all aspects of your robot and your
career

Figure 27 – Build your very own robot based on your
preferences

After creating and naming your robot, you march into
battle. The battle are quite simple: smash, slice, shoot,
or punch your enemy until his health bar hits zero,
before your own bar goes down. Each �ght gives you
points which increase your rank, allowing you to �ght
even more, stronger enemies. After each �ght your
stats increase depending on how you did in battle. If
you only use your left arm to attack, your left arm skill
will increase while the right arm will stay the same.

You get extra hit points, experience for your left and
right arm, and defense depending on how you did in
battle.

Figure 28 – Select an enemy and beat him – it’s as easy
as that!

Figure 29 – Arenas are not very detailed, but it �ts the
game

If you beat an enemy, you will get his arms and can
use them as your own weapons. If you lose a �ght,
you will lose your own arm and have to switch with
something in your inventory, so it’s best to keep some
spares around, or collect them from weaker enemies.

The graphics are rather simple, especially the arena,
but it �ts the game perfectly. You can switch from a
�rst-person perspective to two di�erent third-person
perspectives, whichever way you prefer. It’s quite a
funny little game with not much story or deep
stimulation. Just some good old “beat the crap out of

your enemy and get a bonus.” It’s a nice game to kill
half-hour or so, and I really like playing it on the
ODROID.

Honorable Mentions

Marvel Super Heroes

I normally don’t like �ghting games that much, but
this game is actually quite good, and I only placed it
here cause I already have so many other games
above. Honestly this is a really good game. The
character sprites are huge, and it features vibrant
colors and awesome gameplay. It runs with a 1MB or
4MB RAM expansion pack for more animations.

Mega Man X3

Although this is not a bad game, I really prefer Mega
Man 8. Mega Man X3 looks a lot more serious than
other Mega Man games. In the intro video, cars and
buildings in town are completely destroyed, giving the
game a more sinister feeling. The characters are
slightly bigger and seem more mature. I always
pictured Mega Man as similar to Astro Boy: more of a
kid �ghting imaginative robot monsters. Mega Man X3
seems to be more serious than that. There are also
some minor graphical glitches when walking, but
nothing serious. It’s a good game, though.

There’s also Mega Man X4 but it seems to have issues
with the controls. Using yabause-qt you are stuck
when you try to go into the game, but with yabause-
gtk it seems to work. It’s still not worth switching
emulators, in my opinion.

Metal Black

Actually an interesting shoot ‘em up game. It’s very
basic: a bunch of enemies come at you, you kill them,
and every now and then you encounter a boss. What
is di�erent about this game is that your “power-ups”
simply fall from the sky like �owers in the wind and
you collect them. The more you collect, the stronger
your main attack becomes (6 levels). The same energy
is also used to start a “mega-attack” which deals a lot
more damage and normally kills everything on the
screen. The only issue I have with this game is that
once you start your special attack, it completely drains
your energy. I haven’t found a way to stop it. This

means that after a special attack you’re very weak and
do very little damage.

Metal Slug – Super Vehicle-001

This game is similar to the NeoGeo or PS1 version,
although slightly superior to the PS1 version as the
extra RAM on the Sega Saturn allowed for more
sprites for animation. This version works �ne
although I have experienced some graphical glitches
here and there. This game requires either a 1MB or
4MB memory extension pack to work.

Mobile Suit Z Gundam Zenpen Z no Kodou

This game is similar to Mobile Suit Z Gundam, but
with slightly di�erent controls. Instead of mapping
each button of the controller for one attack, you have
to use buttons to switch between weapons and use a
single button for attack. It’s slightly inconvenient,
therefore not as good as Mobile Suit Z Gundam.

Nights Into Dreams…

Some would probably kill me if I didn’t mention the
game. Some might still kill me because it’s only a
“footnote”. It’s an interesting game, but I only play it
for a couple of minutes at a time. It’s not a go-to game
for me as I rarely play it, but I can see why some
people really like it. It works ok on the XU4, but
slightly too slow. The 3D part slows the game down,
so it might actually run better on the N1 or with real
3D.

Norse by Norsewest (aka Lost Vikings 2)

This is actually quite a good puzzle game, it’s just that
I’m not a huge fan of these kind of games. Although I
played the �rst Lost Vikings game on the Amiga CD32
for quite a while, it’s not one of my favorite games
either. In this game you control three Vikings with
di�erent abilities, guiding them through di�erent
level, solving puzzles to defeat the evil Tomator! It’s a
funny little game, with lots of voice acting and nice
music, but it’s just not for me.

Panzer Dragoon Series

Many people seem to like Panzer Dragoon, and they
are not bad games, I just think they should have not
been brought to life on the Sega Saturn. The Saturn
was all that good with 3D graphics. These games are

purely 3D, and as such, they look rather bad, at least
on the ODROID. They are also rather slow on the
ODROID-XU4. They might have been good games on
the real Sega Saturn, but on ODROID, they are just not
that great. I kind of like Panzer Dragoon Saga (an RPG
game in the series) but the graphics aren’t good. I bet
these games would have been way better on the Sega
Dreamcast.

The last game of the series, Panzer Dragoon Orta, was
released for the original Xbox, and gives you an idea
of what the game could have looked like had it been
ported to the Dreamcast instead. Still, the Panzer
Dragoon Saga RPG won several prizes and it’s easy to
see why. However, it would be better if the graphics
had aged better.

Parodius

Parodius actually comes with two games: Parodius
and Fantastic Journey. It plays very much like Gradius
and is suppose to be a parody of it. It has an
interesting comic style and doesn’t take itself too
seriously. You have plenty of di�erent characters to
choose from, all of which have their own individual
weapon style and upgrades, making it fun to
experiment with the di�erent characters.

It also comes with an auto and semi-auto mode,
where the PC handles your weapon upgrades so you
can concentrate on shooting. This works well, and you
will have a very strong attack in no time, as power ups
are quite common. However, as with all Gradius-style
games, you lose everything when you get destroyed.

Princess Crown

This is a lovely action RPG game with big character
sprites and a real-time �ghting system. I really like it,
but would like it more if only I could understand what
they are saying, since the game is completely in
Japanese. It’s a shame, as I would have really enjoyed
playing it.

Purikura Daisakusen

This is a virtually perfect arcade port. If you know the
arcade version, you know the Sega Saturn version.
You could probably call it a cute ‘em up, but instead of
�ying or any scrolling action, you actually walk by foot

and �ght your way through the levels. You have a tiny
companion that slowly evolves as you progress, and
has a special attack that can hit all enemies on the
screen. I like this game due to the colorful sprites and
lovely backgrounds, but the constantly “pew pew”
sound e�ects for the shooting can get a little
annoying.

Rabbit

This is another game that I only put down here
because it’s already so full up top. Rabbit is another
�ghting game where you �ght together with a “beast
soul.” You and your enemy have an animal soul with
you that can be called forth, allowing you to do special
attacks. Once you’ve beaten an enemy, you collect
their beast soul and can use it as an special attack on
your next enemy. It’s a very interesting �ghting game,
although I don’t like all of the character sprites
because some of them don’t look very polished. There
are games with better graphics out there, but at least
the �ghting style is unique.

Radiant Silvergun

This is the �rst shoot ‘em up I really played for the
Sega Saturn. I also covered it in my �rst article about
the Sega Saturn for ODROID back in September 2016.
What I really like about this game is availability of the
di�erent attacks. You have six di�erent attacks, from
auto-aiming over strong frontal attack, to attacks that

shoot at enemies behind you. There are even
electrical sparks that get stronger the longer you
attack. The Sega Saturn controller had six action
buttons, meaning that all attacks were mapped to a
di�erent button. There are more buttons to use, as
the shoulder buttons activated a sword which could
both attack and collect enemy bullets, making it
perfect for avoiding hits. You could also launch an
even bigger attack that would strike nearly the entire
screen, hitting many enemies at once or simply
dealing extra damage to bosses.

Radiant Silvergun was my �rst shoot ‘em up for the
Sega Saturn and a good one at that. Although it’s
made as a 3D game it plays rather nicely, which is
somewhat rare on the Saturn. My default opinion
about the Saturn is that it excels at 2D graphics and
should have stayed away from 3D.

Rayman

I know that Rayman exists for many systems, and the
PS1 version comes very close to the Saturn version,
but the Saturn version is considered slightly superior.
It has additional animation between loading screens,
in between stages, and at certain bosses. The sound
and music is also said to be better on the Saturn.
Aside from that, the game itself is pretty much the
same on all systems.

Arcade Box
 April 1, 2018 By Brian Kim, Charles Park, and John Lee Gaming, ODROID-XU4, Tinkering

Figure 1 – ODROID Arcade Box

ODROIDs have better performance than the
competitor boards, especially in video rendering,
which means that ODROID boards are very suitable
for playing games, which many ODROID users do.
There are already several game platform operating
systems available, such as Lakka
(http://bit.ly/1NO8BBC) and ODROID GameStation
Turbo (http://bit.ly/1ASFO5O). In order to enjoy our

gaming sessions more, we made our own arcade box
with simple GPIO buttons and joysticks, and called it
the ODROID Arcade Box. We choose an ODROID-XU4
for this project because it has the best GPU
performance of all the current ODROID devices. This
article describes how to recreate the ODROID Arcade
Box for yourself.

http://bit.ly/1NO8BBC
http://bit.ly/1ASFO5O
https://magazine.odroid.com/category/odroid-xu4/

Figure 2 – Our �rst simple prototype

Requirements

Figure 3 – Tools and parts

We decided to make the ODROID Arcade Box using
MDF (Medium-Density Fibreboard). The XU4 Shifter
Shield is also useful in order to utilize the expansion
pins of the ODROID-XU4. Joysticks, buttons and cables
were the input components, and an SMPS (Switched-
Mode Power Supply) was used for the power supply.
The detailed tools and parts list are listed below:

12T MDF Panel

2EA 600×220

2EA 600×75

2EA 220×75

Drill

Crimper

Stripper

Measuring tape

Utility knife

Long Nose Plier

ODROID-XU4

XU4 Shifter shield

SMPS

HDMI, USB, Ethernet extenders

Power socket & Switch

2EA Hinges

Door catcher

4EA foot rubber

Screws

19EA Buttons

2EA Joystick

Wires

Terminals

The ODROID Arcade Box needs a total of 27 inputs (19
inputs for buttons and 8 inputs for joysticks). The
ODROID-XU4’s digital 24 GPIO inputs are not su�cient
for all 27 inputs, so we created two additional ADC
ports for the three additional buttons. The ADC input
values are based on input voltage, and the digital and
analog input values are processed in the GPIO key
daemon, which is described below.

Figure 4 – Expansion ports schematic

Design and assembly

The panels of the ODROID Arcade Box must be
designed and manufactured so that the buttons and
joysticks are well placed. We chose 12T MDF
considered for price and durability. Your design can
be done with any familiar CAD tool such as Google
Sketch or SolidWorks. Although there are many layout
templates for joypad panels available, we chose a
standard Japanese arcade layout.

Figure 5 – Joypad Layout Blueprint

The �rst step of assembly is to attach the sheet to the
MDF panel. This step was easy, but took longer than
the other steps. After that, we inserted the joysticks,
power socket, switch and buttons on the top MDF
panel. The HDMI, Ethernet and USB extenders were
inserted on the back of the MDF panel. The next step
was to assemble each MDF panel by using a drill to
make holes in it, then using screws to hold it together.

Figure 6 – Assembled ODROID Arcade Box Outline

The last step of assembling the ODROID Arcade Box
was wiring the ODROID-XU4 expansion pins to the
input components. In this project, we designed the
external GPIO inputs, as shown in Figure 5. The Select
and Temp buttons are connected to ADC expansion
ports, as shown in Figure 3.

Figure 7 – External GPIO mappings for the Buttons and
Joysticks

Figure 8 – ODROID Arcade Box Wiring

Software Setup

We developed a new GPIO key daemon called
gpio_keyd (http://bit.ly/2ljOZKg). The gpio_keyd
daemon is able to map GPIO inputs and key events
using uinput and wiringPi, which is a pin-based GPIO
access library. It’s designed to be familiar to people
who have used the Arduino wiring system. Although
the upstream wiringPi library supports only Raspberry
Pi, Hardkernel o�ers a wiringPi fork for ODROIDs in its
GitHub repository (http://bit.ly/1Eq3UpF). The
module uinput is a Linux kernel module that handles
the input subsystem from user land. It can be used to
create and handle input devices from an application.

We choose ODROID GameStation Turbo
(http://bit.ly/1ASFO5O) as the software platform for
our ODROID Arcade Box, which has uinput built in.
You should make sure the uinput device �le exists in
your chosen operating system, because some of them
do not have uinput devices.

 $ ls /dev/uinput

If your operating system does not have a /dev/uinput
device �le, then it will be necessary to rebuild and
install a new kernel with the INPUT_UINPUT option
con�guration option set. The Wiki page at
http://bit.ly/1YIToBI describes how to build and
install the kernel image from source code.

$ make menuconfig

 Device Drivers > Input device support

 > Generic input layer

http://bit.ly/2ljOZKg
http://bit.ly/1Eq3UpF
http://bit.ly/1ASFO5O
http://bit.ly/1YIToBI

 > Miscellaneous device

 > User level driver support <*>

Note that wiringPi must be installed before installing
gpio_keyd. On the ODROID GameStation image, the
sudo commands must be run as root, because the
“odroid” account is not designated as a sudo user.

$ git clone

https://github.com/hardkernel/wiringPi.git

$ cd wiringPi

$ sudo ./build

Download the gpio_keyd source code, which is
available from our GitHub repository. The gpio_keyd
build and installation methods are very simple:

$ git clone

https://github.com/bkrepo/gpio_keyd.git

$ cd gpio_keyd

$ make

$ sudo make install

The gpio_keyd script refers to /etc/gpio_keyd.conf as
the default for GPIO and key mapping information.
The con�guration �le was modi�ed for 27 inputs of
ODROID Arcade Box. Some keys are already used in
the game emulator, so we had to change the
emulator key settings in order to avoid key collisions
between the emulator and GPIO input keys. Note that
�eld in the con�guration �le refers to the wiringPi
number, not the GPIO and pin number
(http://bit.ly/2lbzPIB).

Con�guration �le sample for 27 inputs:
/etc/gpio_keyd.conf

Digital input

User 1

KEY_LEFT digital 15 0

KEY_RIGHT digital 1 0

KEY_UP digital 4 0

KEY_DOWN digital 16 0

KEY_A digital 2 0

KEY_S digital 3 0

KEY_D digital 30 0

KEY_F digital 21 0

KEY_Z digital 8 0

KEY_X digital 9 0

KEY_C digital 7 0

KEY_V digital 0 0

User 2

KEY_BACKSLASH digital 12 0

KEY_SLASH digital 13 0

KEY_SEMICOLON digital 14 0

KEY_LEFTBRACE digital 5 0

KEY_Y digital 26 0

KEY_U digital 27 0

KEY_I digital 22 0

KEY_O digital 23 0

KEY_H digital 6 0

KEY_J digital 10 0

KEY_K digital 11 0

KEY_L digital 31 0

Analog input

KEY_B analog 0 0

KEY_N analog 0 2045

KEY_M analog 1 2045

To run gpio_keyd daemon at every startup is
convenient for ODROID Arcade Box.

/etc/init.d/gpio_keyd

#! /bin/sh

BEGIN INIT INFO

Provides: gpio_keyd

RequiredStart: $all

RequiredStop:

DefaultStart: 2 3 4 5

DefaultStop:

ShortDescription: Run /usr/bin/gpio_keyd if

it exist

END INIT INFO

PATH=/sbin:/usr/sbin:/bin:/usr/bin

. /lib/init/vars.sh

. /lib/lsb/initfunctions

do_start() {

 if [x /usr/bin/gpio_keyd]; then

 /usr/bin/gpio_keyd d

 ES=$?

 ["$VERBOSE" != no] && log_end_msg $ES

 return $ES

 fi

}

case "$1" in

start)

do_start

http://bit.ly/2lbzPIB

;;

restart|reload|forcereload)

echo "Error: argument '$1' not supported" >&2

exit 3

;;

stop)

killall gpio_keyd

exit 0

;;

*)

echo "Usage: $0 start|stop" >&2

exit 3

;;

Esac

$ sudo chmod +x /etc/init.d/gpio_keyd

$ sudo updaterc.d gpio_keyd defaults

$ sudo reboot

In the above commands, the gpio_keyd script runs as
a daemon using the “-d” option. Usage of gpio_keyd

can be checked with the “–h” option. Double-check the
keys used by the game or the emulator, then set the
gpio_keyd settings correctly. Then, you are ready to
play and enjoy your games with your new ODROID
Arcade Box.

Figure 9 – The King of Fighters 98, John vs. Brian

Nextcloud Server: Creating a Network Access Storage (NAS) with
an ODROID-HC2
 April 1, 2018 By Autonomous Linux, Tutorial, ODROID-HC2

This guide will walk you through setting up a NAS
(Network Attached Storage) on the ODROID-HC2
single-board computer. There is no reason why it
wouldn’t work for the HC1 or XU4, however the XU4
uses USB3 instead of SATA. The guide is written for
those with no Linux experience and minimal
computer building experience. I’m writing it because I
had minimal Linux experience and it was a pain to
�gure out how to set it up, and involved reading a few
dozen guides.

Parts List

ODROID-HC2 : Home Cloud Two

12V/2A Power Supply Unit US Plug for ODROID-HC2

ODROID-USB-UART Module Kit

SanDisk 32GB Ultra Class 10 SDHC UHS-I Memory
Card, up to 80MB, Grey/Black (SDSDUNC-032G-GN6IN)

AmazonBasics RJ45 Cat-6 Ethernet Patch Cable – 3 Feet
(0.9 Meters)

ODROID-HC2 Cases (Black)

WD Red 2TB NAS Hard Disk Drive – 5400 RPM Class
SATA 6 Gb/s 64MB Cache 3.5 Inch – WD20EFRX

The HC2 is superior to the Raspberry Pi 3 in that it has
gigabit ethernet, a SATA hard drive connection, a
faster 2 Ghz CPU and 2 GB of memory. It is purposely
built to be a network attached storage device or light
weight server. The Raspberry Pi 3 is superior in the
amount of support available from manufacturers and
the community. I opted for the HC2 over the HC1
because high capacity 3.5-inch drives are cheaper
than 2.5-inch drives. The HC1 is more energy e�cient,
if that is a concern. The HC2 does not have an HDMI
output so everything must be set up before the image
is burned to the MicroSD card, over a VNC remote
connection or over a serial connection via Command
Line. This guide will cover setup with a serial
connection but it is worth setting up a VNC server

later, as Linux is easier to use with a GUI if you don’t
know console commands very well.

The HC2 needs a 12 volt/2 amp power supply, a
MicroSD Card, and a 3.5 inch SATA hard drive. I used a
3TB Toshiba hard drive I had laying around. The HC2
with the lid only supports hard drives up to 27mm tall.

Additionally, if the included screws are too short, you
may need screws to attach the hard drive to the
aluminum HC2 �xture.

You will also need an ethernet cable to connect to
your router and the internet. You will also need an
ODROID-USB-UART to connect to the serial port on
the HC2.

Pick up a HC2 case for $5 to close everything up when
you are done.

Assembly

Assembly is extremely simple. Place the hard drive on
the bottom of the HC2 and slide it into the SATA port.
Supporting the hard drive and the aluminum body,
�ip the two pieces over ensuring the hard drive does
not put weight on the SATA connector. Once you have
it upside down, use screws to attach the bottom of
the hard drive to the HC2. Flip it back over and
connect the ethernet cable from the HC2 to your
router. Connect the USB-UART to the serial port on
the HC2. Plug the USB end into your computer. Do
not connect the power supply yet.

Software

Download ODROID’s ubuntu-16.04.3-4.9-mate-odroid-
xu4-20171025.img.xz release at
https://odroid.in/ubuntu_16.04lts. Ubuntu is a Linux
distribution that is free and stable. While that is
downloading, download Etcher: https://etcher.io/.
Etcher is software that will �ash the Ubuntu image
onto your MicroSD card. Put your MicroSD card into
your computer’s MicroSD adapter and start Etcher.
Select the Ubuntu image and the MicroSD card then
click “Flash.” It will take a few minutes to run. When it
�nishes, Windows will pop up a message about
formatting a drive before using it. Click “Cancel.”

Take your �ashed MicroSD card and insert it into the
HC2’s MicroSD slot.

Figure 1 – Flashing a drive with Etcher

Download drivers for the USB-UART from here:
https://goo.gl/opafDn

Extract and install the drivers. Once the drivers are
installed, you will �nd it listed as a COM port in the
device manager.

Figure 2 – Make note of the COM port of the USB-UART
device

Next, download and install PuTTY from
http://the.earth.li/~sgtatham/putty/latest/x86/putty
.exe. PuTTY is a free serial console program we will be
using to send commands to the HC2. PuTTY will
prompt you for connection setting. Type the COM
number from the device manager 115200 for the
speed and check serial for the connection type. Save
your con�guration in case you need to use it in the
future.

https://odroid.in/ubuntu_16.04lts
https://etcher.io/
https://goo.gl/opafDn
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Figure 3 – PuTTY con�guration

Con�guration

Click “Open” in PuTTY and connect power to the HC2.
The console window will show all the boot-up
messages and eventually give you a login prompt. The
default login info is:

User: odroid Password: odroid

Root Access credentials:

User: root Password: odroid

We are going to login and install updates �rst. The
sudo command is “Super User Do” command to run
commands as Admin or Root. Type the following
commands:

$ odroid login: odroid

$ Password: odroid

$ sudo apt update

$ sudo apt upgrade

$ sudo apt distupgrade

$ sudo apt install linuximagexu3

When you install the linux-image-xu3, it will throw out
a prompt telling you that updating the kernel is
dangerous. Do you want to abort the update? Select
“NO.” Sometimes it will throw errors about �les being
in use on your �rst boot. If it does, enter the following
command, and pick up where you left o�:

$ sudo reboot

Partition the Hard Drive

Log back in and type:

$ sudo aptget install lshw

$ sudo lshw C disk

This will list all attached storage.

Figure 4 – Listing the attach storage

You’ll want the logical name for the hard drive in this
case “/dev/sda”. Next, we will partition the disk:

$ sudo fdisk /dev/sda

Create a new partition type by pressing “n” for a new
partition, “p” for primary partition, then “1”. For the
partition start and end hit enter twice to use the
defaults of the entire drive, then type “w” to write the
partition table and exit fdisk.

Format the hard drive

In this guide, we are going to format the hard drive as
ext4. If you ever have to recover the data on the drive,
ext4 is not natively supported by Windows. This is not
major issue since Ubuntu/Nextcloud will be handling
all of the read/write operations. If you need the drive
to be directly compatible with Windows or Mac,
format it as vfat(fat32). Be aware that vfat can only
handle �les up to 4GB and partitions up to 2TB. Make
multiple partitions to work around the partition size
limit.

Type the following command to format the drive:

$ sudo mkfs t ext4 /dev/sda1

When it �nishes formatting, we are going to set up the
hard drive to mount on boot. We are going to create a
directory in Ubuntu to mount the hard drive to. I am
naming mine “SATAHD” but you can use any name
you want:

$ sudo mkdir /media/SATAHD

Next, we need the UUID of the hard drive. When a
hard drive is partitioned, a UUID is generated and
assigned to the partition. Our hard drive is physically
identi�ed as “/dev/sda1” with “sda” being the drive
and “1” being the �rst partition. If the hard drive was
swapped, /dev/sda1 would be the �rst partition of the
new drive. However the UUID of the partition is
unique to only that partition. If you want Ubuntu to
automatically mount whatever drive you put in it as
SATAHD you may use /dev/sda1 instead of the UUID:

$ sudo blkid

Search the results for “/dev/sda1 uuid=”, then copy
the UUID to notepad or scratch paper.

Figure 5 – Make note of the UUID of the drive

Next, we are going to set the drive to automatically
mount on boot. The “sudo nano” command is a
terminal based text editor:

$ sudo nano Bw /etc/fstab

Use your arrow keys to go down to the bottom of the
�le and add the following line:

UUID=7300860a9dd14dd28978d70f3f7bab1b

/media/SATAHD EXT4 defaults 0 2

Use the UUID you copied in the last step instead of
the one I used. “/media/SATAHD” is the mount point
and the directory we created earlier. ext4 is the �le
system we used in formatting the drive. If you used
something other than ext4, substitute the correct �le
system.

Figure 6 – Editing /etc/fstab to auto-mount the drive on
boot

Hold CTRL+X to exit. Press “Y” to save changes and
Enter to save over the old �le, then reboot the
computer:

 $ sudo reboot

Installing Nextcloud

We are going to install Nextcloud with a snap
package. If you want to manually install and con�gure
Nextcloud, the documentation is available at
http://goo.gl/DS5ZjY. Type the following command to
install it:

$ sudo snap install nextcloud

Nextcloud has a list of authorized domains or
addresses. By default, the �rst IP address you access
Nextcloud from will be added to that list. After that
you must manually add addresses. I prefer to have
my router automatically give the same IP address to
the HC2 using the MAC address. You can set your IP
address to be static self-assigned instead of DHCP if
your router doesn’t support assigning IP addresses
this way.

To list the eth0 IP address of your HC2, type the
following command:

$ ifconfig a

Open your web browser and type in the IP address of
your HC2. You will be greeted with a “Make a new
admin account” screen. Enter your choice of
username and password. On the next screen, close
the “Welcome to Nextcloud” pop up. Click the gear in
the top right corner. Select “apps.” Scroll down the list

of apps until you �nd “External storage support.” On
the right side, click the Enable button.

Click the gear in the top right corner again. Select
“Admin.” On the left side bar select “External Storage.”
Click the “Add Storage” drop down box and select
“Local.” Fill in the location as “/media/SATAHD” and hit
the check box on the right to save the changes.

Figure 7 – Adding storage in Nextcloud

Your hard drive will now appear on the home screen
as “Local.” If you need to change the server’s
con�g.php �le, type:

$ sudo nano

/var/snap/nextcloud/current/nextcloud/config/c

onfig.php

The setting you will most likely have to mess with is
the trusted domains, should your IP address change.
As a good security practice you should change your
password for the ODROID account and root. Type:

$ sudo passwd

$ and

$ passwd

You can enable HTTPS, but web browsers won’t like
self-signed certi�cates. Do it right and use Let’s
Encrypt. You can also set up your Nextcloud to be
accessible through a Dynamic DNS but that will be
another tutorial. For comments, questions, and
suggestions, please visit the original article at
http://autonomousdev.net/index.php/2018/03/06/o
droid-hc1-2-ubuntu-nas-with-nextcloud-setup-
guide/.

Further reading

https://help.nextcloud.com/t/adding-a-new-trusted-
domain/26 https://github.com/nextcloud/nextcloud-
snap
https://docs.nextcloud.com/server/13/admin_manu
al/

http://autonomousdev.net/index.php/2018/03/06/odroid-hc1-2-ubuntu-nas-with-nextcloud-setup-guide/
https://help.nextcloud.com/t/adding-a-new-trusted-domain/26
https://github.com/nextcloud/nextcloud-snap
https://docs.nextcloud.com/server/13/admin_manual/

Control Any Electrical Device With An ODROID-C2: A Sample
Project
 April 1, 2018 By Miltiadis Melissas (miltos) ODROID-C2, Tinkering

It was always a 20th-century dream that there will be
an era when every electrical apparatus at home will
be controlled by a single click from any web enabled
device, such as a PC, tablet, or smart TV, from
everywhere. Τhis era has come, and today we will
present you with a way to control any electrical device
with a single click from any other device that has
access to the web.

We will use a spotlight as an example, but this could
be easily substituted with a refrigerator, a washing
machine, or an electric co�ee pot, for example. We
did one simpli�cation, however, which is to electrify
the spotlight with 12V DC instead of 220V AC current,
primarily for safety reasons. We encourage the users
of this guide to do the same, as it is very easy to
expose oneself to hazardous electric shocks!

The relay module we use with the ODROID-C2 in this
project can easily be connected to a 220V power

source, driving any electric device (up to 10A).
Experienced users can try to work with these voltages,
making sure to take all safety precautions. Let us
delve into the endless potential of the ODROID-C2.

Hardware requirements

ODROID-C2 (http://bit.ly/1oTJBya)

5V 1/2/4/8 Channel Relay Board Module ARM AVR DSP
PIC (http://ebay.eu/2ncLWD8)

Lamba JM/84211 3W 3000K 12V or any other
compatible spotlight

Dupon wires female-to-female, male-to-male
(http://ebay.eu/2mDWf6Q)

4 X LS 14500 3.7V 2300mAh Li-ion batteries
(http://ebay.eu/2m0F7EI)

Software requirements

https://magazine.odroid.com/category/odroid-c2/

Ubuntu 16.04 v2.0 from Hardkernel
(http://bit.ly/2cBibbk)

Python 2.3 or 3.3 preinstalled with Ubuntu

WiringPi Library for controlling the ODROID-C2 GPIO
pins. You can learn how to install this at
http://bit.ly/2ba6h8o

Co�eeCup Free HTML Editor (http://bit.ly/2lCxgB8)

PuTTY * – We are going to need to be able to connect
to our ODROID-C2 via SSH, and PuTTY is the perfect
client to do this (http://bit.ly/2kFVngX)

FileZilla – We are going to need a way to transfer �les
onto the ODROID-C2 using SFTP, which is FTP over SSH
(http://bit.ly/1gEw9op)

Connecting it together

Figure 1 – Block diagram

The design of this project is very simple, and the
Songle relay plays the most critical role. We have
connected the GND of the Songle relay with the pin6
of ODROID-C2 (GND). The VCC pin of the relay is
connected directly to pin2 of ODROID-C2, which
provides 5V to this circuit and electri�es the electric
coil of the relay). Finally, the INT1 pin of the relay is
connected with pin7 of our ODROID, which is the pin
that actually controls the relay, which is the ONs and
OFFs of this device. From the other side of the Songle
relay, there is a simple switch on which we have
connected the spotlight through the battery or the
mains. Please refer to the schematic in Figure 1 for a
clear idea of this circuity. As a technical reference
regarding the ODROID-C2 pins, we have used the
excellent PIN Map provided by Hardkernel at
http://bit.ly/2aXAlmt. According to this map, pin2=5V,
pin6=GND and pin7=GPIOX.BIT21 (General Purpose

Input/Output Pin). All of the connections were made
by using the Dupon female-to-female, male-to-male
or male-to-female wires. Now that our hardware is
ready, let us see how to build the software and bring
it all together.

Designing a simple web page

We used the free Co�eeCup HTML editor to design a
simple HTML web page for controlling the spotlight.
On this page, we added the images of two buttons in
order to control the spotlight, represented by the ON
and the OFF buttons. Please refer to Figure 2 for a
view of this page. The whole project is controlled by
using a Web UI. In order to achieve this, we have
hyperlinked those buttons to the relevant Python
scripts songleon.py and songleo�.py that control the
ON and OFF of the spotlight. Instructions on how to
write those programs in Python are provided on the
section called “Connecting the Application to the Web
below.

Figure 2 – Web page

When you �nally design your website, make sure that
your home page is called index.php and not
index.html, just to keep things uniform. However, we
are only going to be using two PHP scripts,
songleon.php and songleo�.php, to control the
spotlight. The Python and PHP code we need to write
is very simple and well documented.

Installing the server

In order to use the ODROID-C2 as a web server in this
project, we have to install all of the necessary server
software components. In addition, since we want a
simple HTML server, we will install Apache with PHP
(server-side scripting-language) support on the
ODROID-C2. The following steps can be performed
with PuTTY. Accessing the ODROID-C2 with this SSH
client is well documented. All you need is the
ODROID-C2’s IP address.

Apache server software is the most widely used web
server software today. Here’s how to install Apache

with PHP support:

odroid@odroid:~# sudo aptget install apache2

php libapache2modphp

When prompted to continue, enter “y” for yes. Next,
enable and start Apache:

odroid@odroid:~# systemctl enable apache2

 odroid@odroid:~# systemctl start apache2

 odroid@odroid:~# systemctl status apache2

Test Apache

Open your web browser and navigate to
http://localhost/ or http:///. This is the address of your
ODROID-C2 on your local network. You can �nd it by
just typing:

odroid@odroid:~# ifconfig

You will see a page similar to one shown in Figure 3.

Figure 3 – Apache test

Test PHP

To test PHP, create a sample testphp.php �le in
Apache document root folder:

odroid@odroid:~# sudo nano

/var/www/html/testphp.php

Add the following lines and save the �le:

Restart the Apache service.

$ sudo systemctl restart apache2

Navigate to http://server-ip-address/testphp.php. It
will display all the details about PHP such as, version,
build date and commands, to name a few. Pleaser
refer to Figure 4 below.

Figure 4 – PHP information

Installing FTP

Install an FTP server such as vsftpd using the
following command:

$ sudo aptget install vsftpd

Edit the FTP con�guration �le by typing:

$ sudo nano /etc/vsftpd.conf

and make the the following changes:

Hit ctrl+W and search for anonymous_enable=YES, and
change it to anonymous_enable=NO

Remove the # from in front of local_enable=YES

Remove the # from in front of write_enable=YES

Skip to the bottom of the �le and add
force_dot_�les=YES

Hit ctrl+X to exit and enter y to save and hit to con�rm:

Then, restart vsftpd:

$ sudo service vsftpd restart

Publishing to the web

By now, you should have a website that you can
transfer over to the ODROID-C2. Once you have
performed all the previous steps and have veri�ed
that you can view your website on another computer,
we can move onto making the website turn ON our
lamp using the 5V 1/2/4/8 Channel Relay Board
Module ARM AVR DSP PIC.

Inside your website directory, create a new PHP �le
called songleon.php containing the following code
snippet, then save the �le:

Next, create a folder in the website directory called
“scripts”, then create a subfolder inside it called

“lights”, and inside there, create a new �le called
songleon.py. This will be the python script that turns
our lamp on. Inside there, enter the following code,
then save the �le:

import wiringpi2 as odroid

 odroid.wiringPiSetup()

 odroid.pinMode(7,1)

 odroid.digitalWrite(7,0)

Go back to your web page in design/edit mode, and
make sure the hyperlink for your “on” button links to
the songleon.php. Now, when you click the button,
the songleon.php script will execute the songleon.py
python script, resulting in the lamp turning on. We are
�nally ready to make it turn o�.

Inside the website directory, create a new �le called
songleo�.php. Inside this, �le enter the following code
snippet, then save it:

 <!?php system("echo odroid | sudo S python

/var/www/html/scripts/lights/songleoff.py");

header('Location: 'index.php') ; ?>

Again, make sure your �le path is the same, so that
this works. Also, set your redirection rules to redirect
to the page of your choice. Then, make a new �le in
the scriptslights folder called sognleo�.py. Inside this
�le, enter the following code, then save the �le:

import wiringpi2 as odroid

odroid.wiringPiSetup()

odroid.pinMode(7,1)

odroid.digitalWrite(7,1)

Add a hyperlink to songleo�.php to your “o�” button,
which should make your lamp turn o�. You now have
a website that can control your lights!

Transfer to Apache

It is very easy to login into your ODROID-C2 apache
web server with Filezilla as soon as you know the
ODROID-C2’s IP address. If you have previously logged
in with SSH into your ODROID-C2 with PuTTY, you can
�nd it out by typing:

odroid@odroid:~# ifconfig

You have to give your name and password of “odroid”
and “odroid”. You will be immediately taken to the

ODROID-C2 root �le system. From there, navigate to
/var/www/html/ folder, and inside this directory, copy
the �les from your local drive to the above directory.
Here are all the �les and folders that you have to copy
from this local directory:

index.php

songleon.php

songleo�.php and �nally the folder /scripts/lights/ with

songleon.py and songleo�.py

Now you are done with the main part of project. One
�nal word of advice: in order for you to have access to
the execution of the scripts controlling the spotlight
(songleon.py and songleo�.py), you have to change
the permissions/rights of all the �les and folders
previously mentioned. We recommend just for the
sake of this project to give them full access with read,
write, and execute privileges for root:

$ sudo chown 755 /var/www/html/index/php

In addition, you have to modify the sudoers �le with
nano editor:

$ sudo nano /etc/sudoers

Provide your password for any modi�cations and add
the following line:

wwwdata ALL=(ALL) NOPASSWD ALL after this

line: %sudo ALL=(ALL:ALL) ALL

Testing the applications

Let’s see if everything is working. From your
computer, laptop, or tablet, navigate to your ODROID-
C2’s IP address in the browser, and click the “on”
button. Are your spotlights lightening up your room?
Now it’s the click the “o�” button. Click it and see your
room’s spotlight switched o�. Success!

Figure 5 – Hardware setup

Final notes

We could give you further guidance on how to control
any electrical device remotely from the o�ce, during

travelling, or you are in an emergency. This is not a
di�cult step now that you’ve got the basic circuit
working in your local network, but be advised that
such a step comes with a security risk. Hackers may
be interested in controlling your server by taking
advantage of a weak password, a commonly used
port, or wrong router settings. For that reason, we
advise you to make your network secure and even
change the password for the user ODROID-C2 to a
stronger one if you are implementing electric device
control. You now have the knowledge you need to
build something innovative and inspiring for you and
your peers.

Prospectors, Miners and 49er’s – Part 2: Dual GPU-CPU Mining on
the XU4/MC1/HC1/HC2
 April 1, 2018 By Edward Kisiel (@hominoid) Linux, Tutorial

Last month’s article introduced Dual GPU-CPU mining
on the Odroid XU4/MC1/HC1/HC2. This month we’ll
update the community on the progress of
improvements to the original work and discuss some
basic GPU tuning. The removal of all the OpenCL AMD
dependencies and INTEL assembler for the OpenCL
kernels and crypto algorithms is now complete for
sgminer-arm. Genesis Mining also recently released a
new version of sgminer-gm 5.5.6. Those changes have
been incorporate into the completed newly released
sgminer 5.5.6-ARM-RC1. Here is brief summary of the
kernels and crypto algorithms that were modi�ed for
the Odroid and the test results.

ocl/build_kernel.c

algorithm/cryptonight.c

– INTEL assembler optimizations

algorithm/neoscrypt.c

– AMD architecture optimizations

kernel/cryptonight.cl

– AMD OpenCL extensions

kernel/equihash.cl

– AMD OpenCL extensions and AMD architecture
optimizations

kernel/ethash.cl

– AMD OpenCL extensions

kernel/ethash-genoil.cl

– AMD architecture optimizations

kernel/ethash-new.cl

– AMD architecture optimizations

kernel/lyra2re.cl

– AMD OpenCL extensions

kernel/lyra2rev2.cl

– AMD OpenCL extensions

kernel/whirlpoolx.cl

– AMD architecture optimizations

kernel/wolf-aes.cl

– AMD OpenCL extensions

kernel/wolf-skein.cl

– AMD OpenCL extensions

Choices had to be made about speci�c coin
algorithms and OpenCL kernels that had architecture
speci�c setting (not AMD extensions) as indicated.
70% of the OpenCL kernels share one or more of the
same AMD OpenCL extensions, that were modi�ed
and tested with the cryptonight kernel, which also
uses 2 OpenCL helper kernels (wolf-aes.cl and wolf-
skein.cl). It appears that ethash-new.cl is not used for
any coins which would leave only 2 unproven in
anyway, whirlpoolx.cl and ethash-genoil.cl. The others
had only AMD and or Nvidia architecture
optimizations that were removed. The most
conservative approach possible was used in
modi�cations so they would run on a wide range of
current and future GPU’s, but there is always room for
technical and human error. The sgminer-arm
implementation should be CPU and GPU agnostic
which raises the possibility for adding some ARM-Mali
optimization based on speci�c architectures (ARMv7,
ARMv8, Mali-T628, Mali-T860) in the future.

Tuning the GPU

When �rst trying to �gure out what the settings
should be for a coin you haven’t mined, start very
conservatively with all of the setting and work your
way up using trial and error until it starts to fail or the
performance starts to drop. Here are some settings
that are a good place to start:

./sgminer k algorithm o

stratum+tcp://your.pool.com:3333 u user p

password I 3 w 32 d 0,1 thread

concurrency 8192

Keep in mind that on all ARM-Mali SOC, the GPU
shares the main memory with the CPU so there is a

dynamic between the two when your dual mining as
well. That is why generally you loss some
performance dual CPU/GPU compared to only mining
on the CPU.

When you start sgminer-arm and the settings are
wrong or too much for the GPU, it can manifest itself
in a lot of di�erent ways. The OpenCL kernel can
crash, hang or indicate di�erent error messages.
Below is a typical error for a GPU tuning problem. It
couldn’t build the OpenCL kernel.

[19:28:21] Error 6: Creating Kernel from

program. (clCreateKernel)

[19:28:21] Failed to init GPU thread 1,

disabling device 1

Another common error message is that the OpenCL
kernel is trying to allocate more memory then it has
available. These both indicate one or more of the GPU
settings need to be reduced(Intensity, Work Size,
Number of threads or Thread-concurrency).

[19:28:16] Maximum buffer memory device 0

supports says 522586112

[19:28:16] Your settings come to 536870912

When Dual Mining, get the GPU tuned and running by
itself and then get the CPU tuned and running by
itself. Then try to run both together but expect to
adjust them again accordingly (usually the CPU). Most
CPU mining software is going to try and use every
system resource it can. You may have to manually set
parameters for the CPU miner instead of letting it
choose. Likewise, there are situations where there is
such tight memory usage that any other normal
process trying to start may cause a system problem
(crash, errors etc). For CPU mining, none of the HK
Image releases use swap by default so Hugh Pages
can’t be enabled. So in general, there should be
similar performance regardless of the CPU miner
software your using.

Cooling, Power Utilization and System Monitoring

You have to monitor CPU temperatures while tuning
until you know what your mining rig setup is capable
of with the crypto-algorithms your using. System
damage can and is likely to occur without adequate
cooling while mining! Generally speaking, OEM

cooling is not su�cient without signi�cantly reducing
the CPU frequency. It is one of many reasons a
system can crash or reboot while single or dual
mining. Even small ambient temperature changes can
signi�cantly impact your system and cause damage.
Monitor the ambient and system temperatures on a
regular basis while mining. Use watchtemp.sh if you
don’t have some other means.

watchtemp.sh

#!/bin/bash

z=0

echo "T, Freq4, Freq5, Freq6, Freq7,

T4, T5, T6, T7, TGPU"

while true :

do

 fa=`cat

/sys/devices/system/cpu/cpu4/cpufreq/scaling_c

ur_freq`

 fb=`cat

/sys/devices/system/cpu/cpu5/cpufreq/scaling_c

ur_freq`

 fc=`cat

/sys/devices/system/cpu/cpu6/cpufreq/scaling_c

ur_freq`

 fd=`cat

/sys/devices/system/cpu/cpu7/cpufreq/scaling_c

ur_freq`

 s1=`cat

/sys/devices/virtual/thermal/thermal_zone0/tem

p`

 s1t=$(($s1/1000))

 s2=`cat

/sys/devices/virtual/thermal/thermal_zone1/tem

p`

 s2t=$(($s2/1000))

 s3=`cat

/sys/devices/virtual/thermal/thermal_zone2/tem

p`

 s3t=$(($s3/1000))

 s4=`cat

/sys/devices/virtual/thermal/thermal_zone3/tem

p`

 s4t=$(($s4/1000))

 g1=`cat

/sys/devices/virtual/thermal/thermal_zone4/tem

p`

 g1t=$(($g1/1000))

 echo $z, $fa, $fb, $fc, $fd, $s1t, $s2t,

$s3t, $s4t, $g1t

 sleep 2

 ((z += 2))

done

No power utilization testing has been, only thermal
testing. See last months article for a preliminary
thermal test. Lots of resource are used
simultaneously while dual mining and some crypto-
algorithms use considerable more power than others.
For example, scrypt2(VRM) mining uses approximately
20-25% more power then cryptonight(Monero)
algorithm. Monitor or do a power utilization study for
a better understanding of ARM-Mali power usage
before or while dual mining di�erent crypto-
algorithms.

When dual mining be conservative so you allow the
rest of the OS to function, keep an eye on
temperature and be aware of power usage until you
prove out both the CPU and GPU con�gurations and
then you can lean into it more. Dual mining pushes
these system to the limits. This is a new frontier for
ARM SBCs, so keep in mind you are on the sharp edge
of extreme system utilization.

Crypotnight (Monero Coin) testing on an Odroid-XU4
GPU only:

sgminer 5.5.6ARMRC1 Started: [20180313

03:06:15] [0 days 12:38:48]

(5s):22.52 (avg):23.85h/s | A:700000 R:10000

HW:48 WU:0.187/m

ST: 1 SS: 0 NB: 421 LW: 48993 GF: 21 RF:

0

Connected to pool.supportxmr.com (stratum)

diff 5K as user

49cbPdjG8RUFjWau2aR9gR1bU6fsP7eGBfaXVsQuFtLrPr

ZkGpC4AuCEJsuKX

Block: e368fdd9... Diff:905.5 Started:

[15:44:30] Best share: 325K

[P]ool management [G]PU management [S]ettings

[D]isplay options [Q]uit

GPU 0: | 13.41/ 13.40h/s | R:

2.6% HW:24 WU:0.103/m I: 7

GPU 1: | 10.45/ 10.45h/s | R:

0.0% HW:24 WU:0.084/m I: 7

[13:41:07] Accepted 035e18c0 Diff 19.5K/5K GPU

0

[13:54:00] Accepted 058d63f3 Diff 11.8K/5K GPU

0

[13:55:45] Accepted 0b3c0178 Diff 5.83K/5K GPU

0

[14:04:37] Accepted 054a51d3 Diff 12.4K/5K GPU

1

[14:15:02] Accepted 014287d0 Diff 52K/5K GPU 1

[14:19:56] Accepted 018036d4 Diff 43.7K/5K GPU

1

[14:20:16] pool.supportxmr.com stale share

detected, submitting (user)

[14:20:16] Accepted 052596c8 Diff 12.7K/5K GPU

0

[14:36:38] Stratum connection to

pool.supportxmr.com interrupted

[14:40:09] Stratum connection to

pool.supportxmr.com interrupted

[14:42:19] Accepted 0b9ad8d2 Diff 5.65K/5K GPU

0

[14:44:23] Accepted 04b3a1c8 Diff 13.9K/5K GPU

0

[14:44:43] Accepted 011e41a0 Diff 58.6K/5K GPU

0

[14:54:26] pool.supportxmr.com stale share

detected, submitting (user)

[14:54:26] Accepted 060914e6 Diff 10.9K/5K GPU

0

[14:57:14] pool.supportxmr.com stale share

detected, submitting (user)

[14:57:14] Accepted 0a2b9f80 Diff 6.44K/5K GPU

1

[15:04:20] pool.supportxmr.com stale share

detected, submitting (user)

[15:04:20] Accepted 076a4aeb Diff 8.84K/5K GPU

0

[15:05:37] Accepted 09d5465e Diff 6.66K/5K GPU

0

[15:10:32] Accepted 0a066760 Diff 6.54K/5K GPU

1

[15:16:15] pool.supportxmr.com stale share

detected, submitting (user)

[15:16:16] Accepted 06082f75 Diff 10.9K/5K GPU

1

[15:18:06] pool.supportxmr.com stale share

detected, submitting (user)

[15:18:06] Accepted 0ce5243a Diff 5.08K/5K GPU

1

[15:18:30] Accepted ccf47695 Diff 81.9K/5K GPU

1

[15:30:46] Accepted 0857db6a Diff 7.86K/5K GPU

0

[15:30:57] Accepted 090f5ea6 Diff 7.23K/5K GPU

1

[15:31:34] Accepted 071e4b0f Diff 9.21K/5K GPU

1

[15:38:34] Accepted 0a0c5007 Diff 6.52K/5K GPU

0

[15:44:56] Accepted 88acc80f Diff 123K/5K GPU

0

The test was run for more than 12 hours and
everything ran smoothly. The summary shows 2
actual rejected shares I have a relatively slow Internet
connection, so any Stratum server disconnects, and
purported stale shares are not unusual.

Summary of runtime statistics:

[15:46:02] Started at [20180313 03:06:15]

[15:46:02] Pool:

stratum+tcp://pool.supportxmr.com:3333

[15:46:02] Runtime: 12 hrs : 39 mins : 47 secs

[15:46:02] Average hashrate: 0.0 Kilohash/s

[15:46:02] Solved blocks: 0

[15:46:02] Best share difficulty: 325K

[15:46:02] Share submissions: 142

[15:46:02] Accepted shares: 140

[15:46:02] Rejected shares: 2

[15:46:02] Accepted difficulty shares: 700000

[15:46:02] Rejected difficulty shares: 10000

[15:46:02] Reject ratio: 1.4%

[15:46:02] Hardware errors: 48

[15:46:02] Utility (accepted shares / min):

0.18/min

[15:46:02] Work Utility (diff1 shares solved /

min): 0.19/min

[15:46:02] Stale submissions discarded due to

new blocks: 0

[15:46:02] Unable to get work from server

occasions: 21

[15:46:02] Work items generated locally: 49055

[15:46:02] Submitting work remotely delay

occasions: 0

[15:46:02] New blocks detected on network: 421

[15:46:02] Summary of per device statistics:

[15:46:02] GPU0 | (5s):13.48

(avg):13.40h/s | A:380000 R:10000 HW:24

WU:0.103/m

[15:46:02] GPU1 | (5s):10.45

(avg):10.45h/s | A:320000 R:0 HW:24 WU:0.084/m

[15:46:02]

Figure 1 – The pool results verify the summary results

With the increasing modi�cation of sgminer a git was
setup for ease of use and future modi�cation.
Likewise, the installation process has changed and no
longer requires any AMD_SDK, only the ARM
Computer Vision and Machine Learning library. Below
is the new procedure.

Download and install the latest ARM Computer Vision
and Machine Learning library from
https://github.com/ARM-
software/ComputeLibrary/releases. Note that they
have separated the Linux and Android libraries so
that it now �ts on a 8GB SD card. Use the following
command to extract the �les:

$ tar xvzf `filename to extract`

Next, install the dependencies and copy the OpenCL
headers:

$ aptget install automake autoconf pkgconfig

libcurl4openssldev libjanssondev libssldev

libgmpdev make g++ git libgmpdev

libncurses5dev libtool openclheaders mali

fbdev

$ cp ./arm_computev18.03bin

linux/include/CL/* /usr/include/CL/

Download sgminer-5.5.6-ARM-RC1 with the following
command:

$ git clone

https://github.com/hominoids/sgminerarm

Then, compile the source code:

$ cd sgminerarm

$ git submodule init

$ git submodule update

$ autoreconf fi

$ CFLAGS="Os Wall march=native std=gnu99

mfpu=neon" ./configure disablegitversion

disableadl disableadlchecks

You can optionally use the following command to be
more explicit as to where you placed the library and
headers:

$ CFLAGS="Os Wall march=native std=gnu99

mfpu=neon I/opt/arm_computev18.03bin

linux/include/CL" LDFLAGS="L/opt/arm_compute

v18.03binlinux/lib/linuxarmv7aneoncl"

./configure disablegitversion disable

adl disableadlchecks

$ make j5

Here is the script and settings used for the testing of
XMR-Monero coin using the cryptonight algorithm:

#!/bin/bash

export GPU_FORCE_64BIT_PTR=1

export GPU_USE_SYNC_OBJECTS=1

export GPU_MAX_ALLOC_PERCENT=100

export GPU_SINGLE_ALLOC_PERCENT=100

export GPU_MAX_HEAP_SIZE=100

./sgminer k cryptonight o

stratum+tcp://pool.supportxmr.com:3333 u

username p password I 7 w 32 d 0,1

threadconcurrency 8192 monero poolno

keepalive

The ODROID Community now has the only multi-
algorithm Linux ARM-Mali OpenCL GPU miner that I’m
aware of in the crypto community! Remember to
check the forum for more information and updates at
https://forum.odroid.com/viewtopic.php?
f=98&t=29571.

https://github.com/ARM-software/ComputeLibrary/releases
https://forum.odroid.com/viewtopic.php?f=98&t=29571

Secure Storage: Creating an Encrypted File System in Linux
 April 1, 2018 By @Anand.moon ODROID-HC2

In Linux, encryption is done through dm-crypt using
LUKS as the key setup using kernel crypto API. This
feature is part of Linux Kernel 4.14.18-106 and above,
additionally we need Exynos5422 Slim SSS (Security
Sub-System) driver which supports AES, SHA-1, SHA-
256, HMAC-SHA-1, and HMAC-SHA-256 encryptions.
The device-mapper target provides transparent
encryption of block devices using the kernel crypto
API.

AES cipher with support of aes-cbc/aes-ctr

Cipher-block chaining (CBC)

Counter (CTR) known as integer counter mode (ICM)
and segmented integer counter (SIC) mode

ESSIV (“Encrypted salt-sector initialization vector”)
allows the system to create IVs based on a hash
including the sector number and encryption key

SHA-256 is the hashing algorithm used for key
derivation

XTS is counter-oriented chaining mode

PLAIN64 is an IV generation mechanism that simply
passes the 64-bit sector index directly to the chaining
algorithm as the IV

Parameters: < cipher > < key > < iv_offset > <

device path > < offset > [< #opt_params > <

opt_params >]

< cipher >

Encryption cipher, encryption mode and Initial

Vector (IV) generator.

The cipher specifications format is:

cipher[:keycount]chainmodeivmode[:ivopts

]

Examples:

aescbcessiv:sha256

aesxtsplain64

Serpentxtsplain64

Cipher format also supports direct

specification with kernel crypt API

format (selected by capi: prefix). The IV

specification is the same

as for the first format type.

This format is mainly used for specification

of authenticated modes.

The crypto API cipher specifications format

is:

Capi:cipher_api_specivmode[:ivopts]

Examples:

capi:cbc(aes)essiv:sha256

capi:xts(aes)plain64

Examples of authenticated modes:

capi:gcm(aes)random

capi:authenc(hmac(sha256),xts(aes))random

capi:rfc7539(chacha20,poly1305)random

Cryptsetup benchmark testing with DRAM

root@odroid:~# cryptsetup benchmark

Tests are approximate using memory only (no

storage IO).

PBKDF2sha1 297552 iterations per second

PBKDF2sha256 195338 iterations per second

PBKDF2sha512 125068 iterations per second

PBKDF2ripemd160 247305 iterations per second

PBKDF2whirlpool 27935 iterations per second

Algorithm | Key | Encryption | Decryption

aescbc 128b 73.8 MiB/s 97.7 MiB/s

serpentcbc 128b 40.9 MiB/s 42.9 MiB/s

twofishcbc 128b 58.0 MiB/s 62.0 MiB/s

aescbc 256b 59.8 MiB/s 74.0 MiB/s

serpentcbc 256b 41.5 MiB/s 42.7 MiB/s

twofishcbc 256b 59.1 MiB/s 62.0 MiB/s

aesxts 256b 110.6 MiB/s 95.2 MiB/s

serpentxts 256b 41.6 MiB/s 42.2 MiB/s

twofishxts 256b 59.7 MiB/s 61.9 MiB/s

aesxts 512b 86.1 MiB/s 72.5 MiB/s

serpentxts 512b 42.1 MiB/s 42.4 MiB/s

twofishxts 512b 60.7 MiB/s 61.6 MiB/s

Cryptsetup benchmark testing with HDD

Figure 1 shows test results from an ODROID-HC2
using a WD 4TB 5400RPM NAS HDD, which may vary
depending on the type of hard drive used:

$ iozone e I a s 100M r 4k r 16k r 512k

r 1024k r 16384k i 0 i 1 i 2

Figure 1 – Cryptsetup benchmark test results for an
ODROID-HC2

Encrypt the hard drive using cryptsetup

Install cryptsetup, and so as not to need rebooting,
start the dm-crypt modules.

$ sudo aptget install cryptsetup

$ sudo modprobe dmcrypt sha256 aes

Test verify the cryptsetup and dm-crypt are working:

$ fallocate l 128MiB /tmp/test.bin

$ dd if=/dev/urandom of=/tmp/testkey.key

bs=128 count=1

$ sync

$ cryptsetup luksFormat debug q d

/tmp/testkey.key cipher aescbcessiv:sha256

h sha256 s 128 /tmp/test.bin

$ fallocate l 128MiB /tmp/test.bin

$ dd if=/dev/urandom of=/tmp/testkey.key

bs=128 count=1

$ sync

$ cryptsetup luksFormat debug q d

/tmp/testkey.key cipher aesctrplain h

sha256 s 128 /tmp/test.bin

Once the you verify the cryptsetup is working �ne,
you can start encrypting the disk. Note that this is full
disk encryption, so the disk needs to be formatted.

$ sudo wipefs a /dev/sda1

/dev/sda1: 6 bytes were erased at offset

0x00000000 (crypto_LUKS): 4c 55 4b 53 ba be

Create a key to unlock the volume

Luks encryption supports multiple keys. These keys
can be passwords entered interactively, or key �les
passed as an argument while unlocking the encrypted
partition.

$ sudo dd if=/dev/urandom of=/root/keyfile

bs=1024 count=4

$ sudo chmod 400 /root/keyfile

To create the encrypted partition on /dev/sda1, luks is
used. The encryption of the partition will be managed
using the cryptsetup command.

$ sudo cryptsetup verifypassphrase

luksFormat /dev/sda1 c aescbcessiv:sha256

h sha256 s 128

This will ask for passphrase which should be long
(more than 8 characters), which should be noted. The
following steps demonstrate how to open up the
encrypted drive and map the dp-crypt to �lesystem
Next, unlock the drive using the passphrase we just
gave,then create a �lesystem on the device.

$ sudo cryptsetup luksOpen /dev/sda1

securebackup

Format the partition:

$ sudo mkfs t ext4 m 1

/dev/mapper/securebackup

Add a luks key to support auto mounting at boot time:

$ sudo cryptsetup v luksClose securebackup

$ sudo cryptsetup luksAddKey /dev/sda1

/root/keyfile

Update the /etc/crypttab �le, to refer to the key�le:

$ cat /etc/crypttab

< target name > < source device > < key file

> < options >

securebackup /dev/sda1 /root/keyfile luks

We need to tell the dm-crypt subsystem that this stick
must be mounted before the encrypted HDD
partition. To do this, open the /etc/default/cryptdisks
�le and look for the line CRYPTDISKS_MOUNT=“”:

$ cat /etc/default/cryptdisks

Run cryptdisks initscripts at startup?

Default is Yes.

CRYPTDISKS_ENABLE=Yes

Mountpoints to mount, before cryptsetup is

invoked at initscripts. Takes

mountpoins which are configured in

/etc/fstab as arguments. Separate

mountpoints by space.

This is useful for keyfiles on removable

media. Default is unset.

CRYPTDISKS_MOUNT="/root/keyfile"

Default check script. Takes effect, if the

'check' option is set in crypttab

without a value.

CRYPTDISKS_CHECK=blkid

Default precheck script. Takes effect, if

the 'precheck' option is set in

crypttab without a value.

Default is 'un_blkid' for plain dmcrypt

devices if unset here.

CRYPTDISKS_PRECHECK=

Verify that the drive is mapped to the crypto device:

$ sudo cryptsetup luksOpen /dev/sda1

securebackup

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

mmcblk1 179:0 0 29.8G 0 disk

|mmcblk1p1 179:1 0 128M 0 part /media/boot

`mmcblk1p2 179:2 0 29.7G 0 part /

sda 8:0 0 149G 0 disk

`sda1 8:1 0 149G 0 part

`securebackup 254:0 0 149G 0 crypt

In order to auto mount the disk on next boot up, you
need to update the /etc/fstab entry:

$ mkdir p /media/secure

$ sudo cat /etc/fstab

UUID=e139ce78984140fe882396a304a09859 /

ext4 errors=remountro,noatime 0 1

LABEL=boot /media/boot vfat defaults 0 1

/dev/mapper/securebackup /media/secure ext4

defaults,rw 0 2

You will be able to manually mount drive the disk if
the previous steps were successful:

$ mount /dev/mapper/securebackup /media/secure

CIFS/Samba performance on an encrypted HDD

Figures 2 – 7 show performance using the following
hardware con�guration:

HC2 + ubuntu-16.04.3-4.14-minimal-odroid-xu4-
20171213.img.xz with updated 4.14.18-106 kernel

8GB MicroSD card

Seagate 8TB HDD (ST8000AS0002)

Encryption: aes-xts-plain64 (256 bit key, SHA256 hash)

Samba was using the following con�guration:

[HDD INTERNAL]

comment = NAS

path = /media/internal

valid users = odroid

writable = yes

create mask = 0775

directory mask = 0775

Tweaks

write cache size = 524288

getwd cache = yes

use sendfile = yes

min receivefile size = 16384

socket options = TCP_NODELAY IPTOS_LOWDELAY

Figure 2 – Before encryption test 1

Figure 3 – Before encryption test 2

Figure 4 – HELIOS LanTest Before Encryption

Figure 5 – After encryption test 1

Figure 6 – After encryption test 2

Figure 7 – HELIOS LanTest After Encryption

For the original article, please see the Wiki post at
https://wiki.odroid.com/odroid-
xu4/software/disk_encryption.

https://wiki.odroid.com/odroid-xu4/software/disk_encryption

Tvheadend
 April 1, 2018 By @Pepes ODROID-C2, Tutorial

Tvheadend (TVH) is server software that can read
video streams from LinuxTV sources and publish
them as streams viewable on devices like Smart TVs
over an IP internet. It can be used as a recorder too.
Input sources can include: DVB-S, DVB-C/T, ATSC, IPTV
and SAT>IP, to name a few. Multiple TVH servers can
be combined to form a network. The following
instructions show how to compile the TVH code for
the ODROID-C2.

Installation

Install the necessary software components using the
following commands:

$ sudo aptget install cmake git libssldev

libdvbcsadev ffmpeg liburiparserdev openssl

libavahiclientdev zlib1gdev libavcodecdev

libavutildev libavformatdev libswscaledev

libavresampledev dvbapps libiconvhookdev

Now, we need to download source code:

$ wget

https://github.com/tvheadend/tvheadend/archive

/master.zip

Move it to a working directory and then extract it:

$ cd ~

$ unzip master.zip d tvheadend

Enter the relevant directory and build:

$ cd tvheadend/tvheadendmaster

$./configure

$ make

You should observe build errors at this point.

To rectify this, download the following �les to
~/tvheadend/tvheadend-master from the git
repository:

con�g.guess (https://goo.gl/3wJNcP)

con�g.sub (https://goo.gl/NKzVes)

https://goo.gl/3wJNcP
https://goo.gl/NKzVes

Replace the original �les with these versions:

$ cp config.guess build.linux/ffmpeg/libtheora

$ cp config.sub build.linux/ffmpeg/libtheora

Now we can repeat the build steps:

$ make

$ sudo make install

For the �rst time that you run Tvheadend, you will
need to run it with the option -C:

$ tvheadend C

You will then need to set up the con�guration through
the UI (IP:9981) and terminate it by pressing CTRL+C.
Then you can run it with other options like:

$ screen m s tvheadend

or:

$ tvheadend

For the latter, you need to have PuTTY connected all
the time, otherwise it will terminate.

Android Development: So, You Want to Be an App Developer?
 April 1, 2018 By Randy Hall Android, Tutorial

So, you want to be an app developer? Let’s see what I
can do to help you with that! A casual survey of the
back issues of ODROID Magazine has shown that
there are plenty of in-depth, detailed articles about
Android on ODROID. What the community has been
missing is a series of “So, you want to get started with
this” articles. Sure, there are plenty of YouTube videos
with questionable audio and video quality, as well as
blogs and tutorials online that you may or may not be
able to �nd through a search, but rather than muddle
through all that noise, I thought it would be helpful to
throw my proverbial hat into the “Getting Started”
ring.

Aside from being capable single-board Linux
computers, ODROID models such as the C1+, C2, and
even the XU4 are well-suited for Android app
development, whether for handheld, tablet, or
automotive use. I own a well-loved ODROID-C1 that I
purchased a couple years ago and while it may be a
bit older than the latest generation of available

hardware, the brain inside is the same as the current
ODROID-C0 and C1+ and is still a valid, a�ordable test
platform for trying out Android apps.

Walk before you run

Before we dive into using ODROID boards for app
development, we need to cover a few basics. First,
you will need to have a way to create the software
that you will run on the Android OS. In order to do
that, you’ll need a development environment, which is
a collection of tools that work together to create the
application. Android has a few options for developing
programs in an Integrated Development Environment
(IDE). We will focus on the “o�cial” one, Android
Studio.

Second, you will need to have a safe place to store
your work. While personally I’m a fan of the self-
hosting, I recognize that any good backup strategy
involves storing a copy of your data o�site. So make
sure to sign up for an online git-based source code

repository on a hosted git provider such as Github,
Gitlab, or Bitbucket.

Finally, let’s take a moment to outline what a sane
software development process should look like, both
in general and speci�cally for Android:

Setting up the development environment

Set up Android on ODROID

Create the Hello World app

Deploy app to Android/ODROID

Iterate!

Setting up the development environment

When you set up a development environment, you
will most likely do it on one of three operating
systems: Linux, Windows or macOS. For this column, I
will install Android Studio on my Mac but you will �nd
the process substantially similar, regardless of
platform. Begin by visiting the Android Studio
download page at
https://developer.android.com/studio. The page will
generally select the correct download for your
operating system (OS), but you can always download
any of the installers or bundles for whatever OS you
wish.

As of this writing, the Android Studio installation
instructions are very straightforward and include
speci�c steps for each supported OS, which are
available at
https://developer.android.com/studio/install.html.
The installation on my Mac was detailed and
remarkably painless. The installer downloads a variety
of Android libraries needed for development and
provides the Intel HAXM hypervisor to assist in
Android emulation down the road. In just a few
minutes, the job is done, as shown in Figure 1.

Figure 1 – Downloading components

Once you click “Finish”, the app will start and you’ll be
confronted by a list of choices. For now, select “Start a
new Android Studio project” and have a look around.
Of course, you’ll be immediately plunged into the
world of Java programming on the “Create Android
Project” screen as you’ll be asked to come up with a
“company domain.”, which I’ll explain in the next
section.

What domain?

In Java, all object classes are divided into namespaces,
which are basically groupings where you can safely
create Java classes, which can be named in whatever
way you want, that won’t clobber someone else’s Java
class de�nitions. It’s similar in concept to domain
names on the web, which is why Android Studio
refers to it as a “company domain”, as illustrated in
Figure 2. For now, you can put any domain you want,
but de�nitely don’t use a domain that you don’t own
or control.

https://developer.android.com/studio
https://developer.android.com/studio/install.html

Figure 2 – Create Android project

You can see the resulting namespace for this new
project by looking at the “Package Name” �eld on that
screen, which in my case shows
“com.randy_hall.my�rstapp”. For now, understand
that this is how Java and, by extension, Android,
works.

What Device?

Next, we’ll look at what level of Android API we want
to use for this project. This is both an incredible
advantage of Android, and one of its most frustrating
shortcomings. There is such a wide variety of software
versions of Android out in the world that when you
choose to support one API level over another, you
inherently exclude a number of Android devices from
using your app. For now, let’s be reasonable and
choose “API 21: Android 5.0 (Lollipop)” as shown in
Figure 3, which, according to Android Studio, will
mean that our app will run on about 71.3% of Android
devices as of this writing. As new Android devices are
introduced and old phones get upgraded or
decommissioned, this number will generally increase
over time.

Figure 3 – Target Android devices

Adding activity

Android Studio can help get you o� the ground a bit
more quickly by providing some sca�olding, which are
templates of common application patterns that
provide a starting point to begin your work. There are
several to choose from, which we will talk more about
in the future, but for now let’s pick “Empty Activity”, as
shown in Figure 4.

Figure 4 – Add an activity to mobile

You will be asked to con�gure the empty activity by
giving it a name and a layout name. Both of these will
be used to generate code for the project, so you can
name it however you like. I will stick with the defaults
of “MainActivity” and “activity_main”, but you can
always change them later in the code.

Once the MainActivity has been generated, things
start moving forward! We have clicked a lot, and
Android Studio has done some background work, but

now we are in the IDE, ready to get started. You may
notice right away that the amount of code generated
is relatively small. That’s in large part because we
chose an Empty Activity, which is remarkably empty! If
we had chosen another activity to generate, we would
have been faced with considerably larger amount of
code to look through.

Along the way, I got a “Gradle Sync” error, as shown in
Figure 5, which means that I don’t have the most
recent Android API installed. I clicked the “Install
missing platform(s)” and hit refresh, after which the
error repeated itself for the build tools. Installing both
of these pieces (if they weren’t already there) got me
past that hurdle and on to the workspace, ready for
coding.

Figure 5 – Gradle Sync error

Git with it

Now we are ready to move to the next step, which is
creating a hosted git account to store and perhaps
share our work. For this, we will use one of the slightly
less well-known hosted git providers, Github
(https://www.github.com).

Hosted git providers like Github, Gitlab, and Bitbucket
are all based on the widely used open-source git
version control software. We can get into the
philosophy behind git in more detail in another
article, but for now it’s enough to know that the
method we’re using for backing up our projects is very
well-supported in the app development world.

Creating a new account at Github is easy. You need to
choose an original username, provide a valid email
account to activate the Github account, and select a
password. Once you’ve done that, Github will pitch
you on subscribing for additional services, but you
can choose the default free plan, which means only
that your repositories will be publicly visible. If that’s a
problem for you, you can always opt for Gitlab, which
provides a free private git repository option, or pay a
subscription to Github for the privilege of keeping
private repos.

Ready to run?

Once you’re signed up, you’re just about ready to
connect Android Studio to your Github account. We
will pick that up in the next installment, and then
proceed to create the most typical of all applications:
the “Hello World” app. The world of Android app
development is now open!

Despite what you might think, I don’t write these
articles for my own well-being. I would love to hear
about what kinds of app development you’re
interested in doing. Your feedback will inform and
in�uence how these articles evolve over time! If you
are interested in participating, you can comment on
the interactive version of ODROID Magazine for this
article, or visit the ODROID Magazine forum at
https://forum.odroid.com.

https://www.github.com/
https://forum.odroid.com/

Setting Up Your ODROID: ODROID-XU4 As A General Purpose
NAS
 April 1, 2018 By Adrian Popa Linux, ODROID-XU4, Tutorial

I purchased my ODROID-XU4 with the intent of
converting it into a NAS. However, I did not want to
settle on a specialized NAS distro like
OpenMediaVault because I wanted my ODROID-XU4
to do much more than being a plain old NAS. For
instance, I plan on transcoding TV shows recorded
from my TV to the H264 standard, using the ODROID-
XU4’s hardware encoder (as described in
http://bit.ly/2jnv4Za), and also make use of the GPIO
pins later on. One more issue I had with
OpenMediaVault is that it runs on top of Debian, and I
wanted to keep using Ubuntu in order to bene�t from
newer packages.

I would be losing much of the convenience of using a
specialized distro and consequently have to discover
alternate ways of doing things in a simple and user-
friendly way. This presents an opportunity to gain
new knowledge.

These are the steps we will need to take:

Install Webmin (http://bit.ly/J5WtfI) for easier
management

Mount the disks

Set up network shares (Samba/NFS)

Install Owncloud

Secure and optimize the OS

These instructions presume that you have medium or
higher level system expertise.

Webmin

Every NAS needs a nice web GUI. Unfortunately,
OpenMediaVault’s GUI is not an option, and after
searching for a long while for alternatives I settled on
using Webmin. Webmin has been around since 1997
and has solid support for general server maintenance
tasks. It has the advantage that even inexperienced

http://bit.ly/2jnv4Za
http://bit.ly/J5WtfI

users can �nd their way around and with the
integrated help in order to set set up and manage all
kinds of servers like Apache, MySQL, Mail, DNS, and
more. It has solid support for RAID and LVM
management, and also supports Samba and NFS �le
sharing. Unfortunately, it lacks support for newer
services like Transmission or Owncloud, but I can
always con�gure them manually.

To install it, follow the steps below:

$ echo "deb

http://download.webmin.com/download/repository

sarge contrib" | sudo tee

/etc/apt/sources.list.d/webmin.list

$ wget http://www.webmin.com/jcameronkey.asc

$ sudo aptkey add jcameronkey.asc

$ rm jcameronkey.asc

$ sudo aptget update

$ sudo aptget install libaptpkgperl libnet

ssleayperl libauthenpamperl libioptyperl

aptshowversions apttransporthttps

$ sudo aptget install webmin

$ sudo systemctl enable webmin

$ sudo systemctl start webmin

You can login to your device’s IP address on port
10000 to use the web interface: https://odroid-
ip:10000. However after you log-in (with any system
user with sudo access) you will likely be unimpressed
by the default interface. It looks like it is out of the
1990’s.

Figure 1 – Stock Webmin interface

The �rst thing we must do is beautify it via a theme.
The best-looking theme is called “Authentic Theme”,
which brings in a lot of features, including being
mobile-friendly. You can get the latest version from
http://bit.ly/2jf468e and install it using the following
command:

$ wget https://github.com/qooob/authentic

theme/releases/download/19.12/authentictheme

19.12.wbt.gz

Navigate inside Webmin to “Webmin Con�guration ->
Webmin Themes -> Install themes -> From uploaded
�le” and select the newly downloaded theme. After a
short wait and refresh later, you will be presented
with the following page:

Figure2 – Webmin with Authentic theme

You can explore Webmin’s features by using the
search tool in the interface. Note that you can install
third-party modules available from
http://bit.ly/2jf6KLd.

Mounting disks

First, you will need to decide if you are going to use
RAID or LVM with your disks, and which �lesystem
you would use. I will not go into details about setting
RAID/LVM because the subject has been discussed in
previous articles. However, even without having a lot
of expertise, you can use Webmin to do the heavy
lifting for you and use the built-in help to learn more.
Webmin will prompt you to install any missing
dependencies. Once you have your partitions ready,
you can start mounting them.

The traditional method of mounting is to use
/etc/fstab (and Webmin has a comprehensive module
to handle that as well), but you may run into
problems if you start your system with the disk not
attached (systemd likes to wait around for the disk). I
prefer to use autofs, which mounts disks (local or
network-based) on demand and unmounts them
when not in use. Unfortunately, it’s not managed by
webmin, so you will need to use the shell:

$ sudo aptget install autofs

http://bit.ly/2jf468e
http://bit.ly/2jf6KLd

You will need to edit /etc/auto.master and add a
mount entry for your disk, specifying the base
directory and its con�guration �le:

$ sudo vi /etc/auto.master

add at the end your mountpoint

/media/yourdisk /etc/auto.yourdisk timeout

20

In the command above, replace your disk with the
path you want to use. Next, edit this con�guration �le
and add your partitions and their mount parameters,
using the command “blkid” to �nd the correct UUID
for the disk:

$ sudo blkid

$ sudo vi /etc/auto.yourdisk

xfspartition

fstype=xfs,dev,exec,suid,noatime

:UUID=9d2d675dcb0845b2b222c981a8d00c06

Restart autofs, and when you access
/media/yourdisk/xfs-partition your partition will be
mounted automatically:

$ sudo service autofs restart

You will need to take care of the mount parameters
because each �lesystem has their own parameters
and they might impact performance. For instance,
without activating the parameter big_writes on NTFS,
you will get very poor performance. If in doubt, you
can cheat and use Webmin to create entries in
/etc/fstab, test them to ensure the parameters are ok,
and migrate them to autofs’s layout later (that’s what I
used). To force automounted disks to be unmounted,
you can simply restart the autofs service.

Set up �le shares

To set up Samba shares (and also install Transmission
for torrent downloading) you can follow the guide
“Designing your own seedbox” featured in Odroid
Magazine http://bit.ly/2j3xpaK. You also can also
experiment with Webmin’s interface and easily create
shares and users with a few clicks. For example,
Figure 3 shows the “Create NFS share” dialog. Clicking
on the form items shows a contextual help menu that
explains well, what that item does. This can help you
with things you might not be familiar with.

Figure3 – Create NFS share

When creating Samba/NFS shares, take security into
consideration from the start. Samba authenticates by
userid and password, but NFS authenticates users
only by IP. If you know which hosts in your network
may have access to speci�c shares, specify it in the
con�guration. For example, an NFS share might be
exported to “Everyone”, but access can still be limited
with iptables or /etc/hosts.allow and /etc/hosts.deny
(which are used by TCP Wrappers Webmin module).

Figure 4 – . /etc/hosts.allow con�guration for NFS to
limit access from a few hosts

Used with its default con�guration, Samba will give
decent performance, but with the tweaks below,
extracted from the ODROID forums, you should get
fewer “pauses” in large �le transfers. Add the lines
below to the [global] section of your
/etc/samba/smb.conf:

write cache size = 524288

getwd cache = yes

use sendfile = yes

min receivefile size = 16384

Install Owncloud

Owncloud is a personal “cloud” service that lets you
share �les with people over the Internet. I am not
going to go into installation details, because they have
been discussed in a previous Magazine article

http://bit.ly/2j3xpaK

http://bit.ly/2kgVZpn, but there are some things I
would like to point out.

First of all, the installation is quite simple on Ubuntu
16.04. I used the guide at http://do.co/2bzxhxG and
was up and running in 10 minutes. If you have a DNS
name (e.g. dynamic DNS for your home) you should
take the time to get a valid SSL certi�cate from Let’s
Encrypt (http://bit.ly/1qmIXIY) using steps listed at
http://do.co/2bQpv4M.

You basically need to install the following
prerequisites before installing OwnCloud:

$ sudo aptget install php

 libapache2modphp phpmcrypt

 phpmysql phpbz2 phpcurl

 phpgd phpimagick phpintl

 phpmbstring phpxml phpzip

 mysqlserver apache2

Next you install the OwnCloud repository for Ubuntu
and refresh the available packages:

$ sudo curl

https://download.owncloud.org/download/

repositories/stable/Ubuntu_16.04/Release.key

| sudo aptkey add

$ echo 'deb

https://download.owncloud.org/download/

repositories/stable/Ubuntu_16.04/ /'

| sudo tee

/etc/apt/sources.list.d/owncloud.list

$ sudo aptget update

Finally, you can install OwnCloud:

$ sudo aptget install owncloud

$ sudo systemctl reload apache2

You will also need to create a database user for
OwnCloud:

$ sudo mysql u root

> CREATE DATABASE owncloud;

> GRANT ALL ON owncloud.* to

'owncloud'@'localhost' IDENTIFIED BY

'databasePassword';

> FLUSH PRIVILEGES;

> exit

After all this work, you can login through the web
interface at https:///owncloud and �nish the

installation. Since the point of OwnCloud is to be
accessible to the Internet, you should take some time
to harden your installation, as described at
http://bit.ly/2jOTe1F. In my case, I want to run the
OwnCloud service on a di�erent port (so that external
users don’t have access to my internal sites), to set
iptables rules to allow access only from my country
(based on geo-ip data), and set up fail2ban to protect
me against automated password guesses.

In order to run the OwnCloud virtual host on a
di�erent port you need to make a few adjustments to
your apache con�g:

$ sudo cp /etc/apache2/sites

available/defaultssl.conf

 /etc/apache2/sitesavailable/owncloud.conf

$ cd /etc/apache2/sitesavailable

$ sudo ln s ../sitesavailable/owncloud.conf

 020owncloud.conf

Next, edit /etc/apache2/sites-available/owncloud.conf
and make the following changes:

Add “Listen 8443” as the �rst row Change the
VirtualHost de�nition to use port 8443 instead of 443
() Change DocumentRoot to point to your owncloud
installation “DocumentRoot /var/www/owncloud”

When done, you can restart the Apache daemon, and
you should be able to access only your OwnCloud
instance on https://:8443/.

To get started with GeoIP �rewall rules, you’ll need to
have the kernel sources (or kernel headers) available.
Next, you can install the extra iptables modules with
the following command:

$ sudo aptget install

 xtablesaddonsdkms

 xtablesaddonscommon

 xtablesaddonssource

The dkms package may fail to install cleanly because
some of the modules fail to compile against kernel
4.9/4.14. You can disable the failed modules and
recompile the rest by setting the following settings to
“n” instead of “m” in the �le /var/lib/dkms/xtables-
addons/2.10/build/mcon�g:

http://bit.ly/2kgVZpn
http://do.co/2bzxhxG
http://bit.ly/1qmIXIY
http://do.co/2bQpv4M
http://bit.ly/2jOTe1F

$ sudo vi /var/lib/dkms/xtables

addons/2.10/build/mconfig

build_ACCOUNT=n

build_LOGMARK=n

build_SYSRQ=n

build_pknock=n

build_psd=n

Next you will need to manually compile the rest:

$ cd /var/lib/dkms/xtablesaddons/2.10/build/

$ sudo autoconf

$ sudo ./configure

$ sudo make

$ sudo make install

Before using the geoip module, you will need to
initialize the geoip database (the pre�x to country
mapping). You may need to repeat this step from time
to time to bene�t from the latest data:

$ sudo aptget install libtextcsvxsperl

$ sudo mkdir /usr/share/xt_geoip

$ sudo /usr/lib/xtablesaddons/xt_geoip_dl

$ sudo /usr/lib/xtablesaddons/xt_geoip_build

D /usr/share/xt_geoip

/root/GeoIPCountryWhois.csv

All that is left to do now is to create and test the
iptables rules to allow only tra�c that you want to
reach your owncloud setup. An example rule looks
like this:

$ sudo iptables N geoowncloud

$ sudo iptables A INPUT p tcp m tcp dport

8443 j geoowncloud

$ sudo iptables A geoowncloud s

192.168.1.0/24 j ACCEPT

$ sudo iptables A geoowncloud m geoip !

srccc RO j DROP

Do not forget to save your rules and apply them at
startup (either with iptables-save or with webmin).
More details about geoip can be found at
http://bit.ly/2jnwUJD.

Con�guring fail2ban is not very complicated once you
follow the tutorial at http://bit.ly/2kipXxn. Remember
to install fail2ban �rst (and test it with some false
credentials):

$ sudo aptget install fail2ban

Figure 5 – Fail2Ban doing its job on failed logins

Since we have added a special port for owncloud, we
will need to tweak fail2ban’s con�guration to account
for that. Edit /etc/fail2ban/jail.local and append “port
8443” to the port line and restart fail2ban:

$ sudo vi /etc/fail2ban/jail.local

port = http,https,8443

$ sudo service fail2ban restart

To manually lift the ban for a blacklisted IP address
you can run the following command:

$ sudo fail2banclient set owncloud unbanip

172.22.22.2

Assign tasks to speci�c CPUs

The ODROID-XU4 comes with two types of CPU cores:
4 little cores that are low power and are best suited
for background tasks and 4 big cores which are
designated for more powerful tasks. The o�cial
kernel comes with a “magic” scheduler from Samsung
which knows the processor’s true power, and can
switch tasks from the little cores to the big cores
when load is high. There may be special cases where
you want to run speci�c tasks exclusively on the big or
little cores, either to maximize performance, or to
minimize temperature. We can use use cgroups as
noted in http://bit.ly/2jP6KlU.

“cgroups” is a feature of modern kernels that allows
allocation of resources for various processes. In our
case we will need the “cpuset” cgroup to create a
“littlecores” and a “bigcores” group. Each group will
force processes to run on speci�c cores by setting the
a�nity. So, littlecores will have cpus 0-3 and bigcores
4-7. Fortunately, creating the cgroups is easy:

mkdir p /sys/fs/cgroup/cpuset/littlecores

 /sys/fs/cgroup/cpuset/bigcores

echo "03" > /sys/fs/cgroup/cpuset/

littlecores/cpuset.cpus

echo "0"> /sys/fs/cgroup/cpuset/

littlecores/cpuset.mems

chmod R 777 /sys/fs/cgroup/cpuset/

http://bit.ly/2jnwUJD
http://bit.ly/2kipXxn
http://bit.ly/2jP6KlU

littlecores

echo "47"> /sys/fs/cgroup/cpuset/

bigcores/cpuset.cpus

echo "0"> /sys/fs/cgroup/cpuset/

bigcores/cpuset.mems

chmod R 777 /sys/fs/cgroup/cpuset/

bigcores

Unfortunately, the commands will only last until the
next reboot. So, let us create a service to set them as
early as possible on boot:

$ sudo wget O

/etc/systemd/system/cpuset.service

https://raw.githubusercontent.com/madady/

odroidODROIDXU4

optimizations/master/cpuset.service

$ sudo systemctl enable cpuset

$ sudo systemctl start cpuset

At this point, the cgroups are created, but they are not
actively used by anyone. To manually start a process
in a speci�c cgroup, you can use cgexec:

$ sudo aptget install cgrouptools

$ cgexec g cpuset:bigcores sysbench

test=cpu

cpumaxprime=100000 numthreads=8 run

Figure 6 – 8 sysbench threads are forced to run on 4
speci�c cores

We are only halfway there. We will need to tell speci�c
processes to run on the little cores and the others to
run on the big cores. This is where you need to make
a list and decide what you want. Start with a list of
active services from webmin (System -> Bootup and
Shutdown) and disable anything you will not be using.
In my case I have disabled the following services:
ModemManager, NetworkManager-wait-online,
NetworkManager, accounts-daemon, alsa-restore,
alsa-state, apport, apport-forward.socket, bluetooth,
cups-browsed, cups.path, cups.service, cups.socket,
lightdm, lxc-net, lxc, lxcfs, plymouth*, rsync, saned,
speech-dispatcher and whoopsie.

You will need to edit the startup scripts for the
services you want and have them add their PID to the

correct cgroup. Once the main process (and its
children) are part of the correct cgroup, any new
children will inherit the cgroup. My plan was to add
things like MySQL, Apache, Samba, NFS and even
Webmin to the big group and things like SSH (and all
my shell activity), cron, Munin, and Transmission to
the little group. This allows processes that are
involved in the NAS functionality to be snappy, while
other tasks can happily run on the little cores. If you
are also using the X11 GUI, you might want to add
lightdm to the “bigcores” group as well.

There are two types of startup scripts – systemd
native scripts and legacy sys-v (/etc/init.d/). When
editing a systemd script (for example nfs-
mountd.service) you will need to add something like
this to the [Service] section:

ExecStartPost=/bin/sh c 'echo $MAINPID | tee

a /sys/fs/cgroup/cpuset/bigcores/tasks'

When editing an older sys-v script, it is trickier. You
will need to �nd the start function, extract the PID(s)
of the newly started process and add it to the tasks
list. Below is an example for changing the apache
startup script:

pidof apache2 | tr " " ""| xargs 0 n1 | sudo

tee a /sys/fs/cgroup/cpuset/bigcores/tasks

Figure 7 – Changing apache’s startup con�guration

Take care to restart each service after changing it and
make sure to check that the process PID is in the
correct cpuset tasks �le. Do a full system reboot and
check again after restart. If this sounds too
complicated and mostly want to run tasks on the big
cores, there is a way to cheat. You can simply set
systemd’s a�nity, and all of its children processes will
inherit it. The a�nity can be controlled by the

CPUA�nity parameter in /etc/systemd/system.conf,
but keep in mind you’ll be wasting CPU cores.

Disk longevity

In order to prolong the life of your disk(s), you may
want to spin them down after a period of inactivity. If
you are using SSDs, you can skip this section because
it only applies to old mechanical disks. Disks may
receive a “stop” command to spin down either from
an internal controller, from the USB-SATA bridge or
directly from the operating system. However,
sometimes the controllers are not tuned correctly and
a stop command never arrives. This causes the disk to
keep spinning which generates a lot of heat and can
cause the drive to fail sooner than normal.

The normal way to handle this is to tell the disk to
spin down after a period of inactivity, which can be
done with hdparm:

$ sudo aptget install sdparm hdparm

To manually set the disk to sleep after 10 minutes of
inactivity, you can run the following command:

$ sudo hdparm S 120 /dev/sda

If you get errors (like “bad/missing sense data”),
hdparm might not help you for that disk.

To handle disk mobility, it would be better to let udev
run the command after a disk has been plugged in.
Since di�erent disks might have di�erent roles, and
you may want di�erent sleep timers (e.g. one disk is
for backups and should sleep sooner, other is active
and should sleep later), I decided on setting the UDEV
rule based on the disk’s serial number. You can get
this serial number by looking in dmesg when plugging
in a disk:

[1885221.800435] usb 41.3: Product: My

Passport 0730

[1885221.800436] usb 41.3: Manufacturer:

Western Digital

[1885221.800437] usb 41.3: SerialNumber:

575844314141305636323937

To set up the rule, create a �le like this and reload
udev:

$ sudo vi /etc/udev/rules.d/90disk.rules

ACTION=="add", ENV{DEVNAME}=="/dev/sd?",

SUBSYSTEM=="block",

ENV{ID_SERIAL_SHORT}=="57584431414130563632393

7", RUN+="/sbin/hdparm S 120 $env{DEVNAME}"

$ sudo udevadm control R

If the hdparm cannot put your disk to sleep, then try
other alternatives like sdparm, which can send a SCSI
command to your disk, like ordering it to shut down in
that instant:

$ sudo sdparm C stop /dev/sda

There are tools like hd-idle (http://bit.ly/2j3zWSk) or
periodic scripts you can run to put your disk to sleep.
In my case they did not work, but make sure to try
them manually before settling on a solution. Here is a
manual script which checks a disk (identi�ed by a
partition’s UUID) for activity in a 10s window, and if
there was no disk activity (data transferred), it uses
sdparm to stop the disk. You can run it via cron:

$ sudo wget O /usr/local/bin/hddidle.sh

http://bit.ly/2k6LK7Y

$ sudo chmod a+x /usr/local/bin/hddidle.sh

$ sudo /usr/local/bin/hddidle.sh "4283E975"

You must be aware that there are tools and services
which will wake up your disk periodically, even if no
data is transferred. Such tools include smartctl (from
smartmontools) and smartd. The smartd service
periodically checks disk health, and if not correctly
con�gured, it may keep your disk up needlessly. You
can consult the thread at http://bit.ly/2kh6b17 in
case you do not know what is keeping your disk
awake. You should be able to infer the disk’s state by
running this command: $ sudo smartctl -d sat -n
standby -a /dev/sda

If it exits with an error, your disk is still in standby and
should have been spun-down.

Flash disk performance

One more thing to keep in mind when using �ash
storage (eMMC or SSD) is that they need periodic
trimming to maintain their speed. Basically, in order
to write to a storage block, you need to erase it �rst
and this takes longer than writing to it. Normal

http://bit.ly/2j3zWSk
http://bit.ly/2kh6b17

�lesystems do not do this erase when deleting data,
so after a while disk performance drops signi�cantly.
To “revive” the disk, the trim operation informs the
disk controller to erase all empty blocks, thus
restoring write speeds. The trim operation must be
supported by the �lesystem and the disk controller.
Again, using cron once a week to run fstrim can save
you from slowdowns in the long term:

$ sudo crontab e

#trim the eMMC once a week

15 0 0 * * /sbin/fstrim / >/dev/null 2>&1

Governor

Performance and heat are also directly dependent on
what governor you are using for the CPU. Keeping
“performance” on gets you top performance, but also
generates a lot of heat. In my tests, the best
combination was a modi�ed “ondemand” governor
based on the recommandations at
http://bit.ly/2jfaDjw. To enable it, make sure you
select governor = ondemand in /media/boot/boot.ini,
and set the rest of the parameters inside /etc/rc.local
(test out the commands before). The commands
below work for a 4.9/4.14 kernel and may di�er for
the 3.10 kernel:

$ sudo vi /etc/rc.local

echo 1 >

/sys/devices/system/cpu/cpufreq/ondemand/io_is

_busy

echo 10 >

/sys/devices/system/cpu/cpufreq/ondemand/sampl

ing_down_factor

echo 80 >

/sys/devices/system/cpu/cpufreq/ondemand/up_th

reshold

With the setting above, the CPU will ramp up
frequency sooner and will consider IO usage as CPU,
making IO intensive tasks in�uence the CPU
frequency. This allows you to have great performance
when needed and low heat when idle. In my usage,
the little cores idle around 300MHz while the big
cores idle at 200MHz.

Network performance – MTU

If you have a Gigabit network with proper cables, you
can increase the MTU (Maximum Transmission Unit)
on the ODROID-XU4’s onboard network. This will
allow it to send larger packets which have less
overhead and generate fewer interrupts on the
receiving end. However, to bene�t from it, you will
need to have network devices (switches/routers) and
end devices which support Jumbo frames. Ideally,
Jumbo frames would need to be enabled on all
network devices in your LAN, otherwise you might see
dropped tra�c or even devices unable to send large
tra�c to each other. For example, SSH works because
it uses small packets, but getting a web page or
transferring a �le stalls the connection. If you do
decide to enable jumbo frames, the ODROID-XU4’s
magic MTU value is 6975 (http://bit.ly/2jP9zDl). You
can enable it on the ODROID-XU4 inside /etc/rc.local:

$ sudo vi /etc/rc.local

#MTU

/sbin/ifconfig eth0 mtu 6975 up

Fastest transfers over sshfs/scp/sftp

Since SSH is a very �exible protocol and supports
tunnelling and �le transfer, it would be wise to use it
at full speed. If you attempt a secure copy (scp)
transfer on an ODROID-XU4 with the sshd process
tied to the little cores, you will get about 15MB/s top
speed. If you tie the sshd process to the big cores you
get 40MB/s. If you are feeling adventurous and do not
mind sacri�cing some security, you can squeeze
50MB/s by lowering the encryption algorithm used. I
did that by starting a di�erent sshd instance (on port
2222) with di�erent settings:

$ sudo wget O /etc/systemd/system/ssh

big.service

https://raw.githubusercontent.com/madady/

odroidxu4optimizations/master/ssh

big.service

$ sudo wget O /etc/ssh/sshd_config_big

https://raw.githubusercontent.com/madady/

odroidxu4

optimizations/master/sshd_config_big

$ sudo systemctl enable sshbig

$ sudo systemctl start sshbig

http://bit.ly/2jP9zDl

To mount or transfer a �le using this new ssh service
you will need to speci�cally specify the cipher (since it
is disabled by default because it is considered weak).
You can do so in an entry in ~/.ssh/con�g on the
client:

Host odroidbig

Hostname odroidip

Port 2222

Ciphers arcfour

Compression no

To transfer �les you can simply use the following
command:

$ scp bigfile odroidbig:/remote/path

Tune systemd timeouts

It can be irritating to wait around for systemd to �nish
waiting for something that will never �nish. You can
tweak systemd’s timeouts by modifying the global
timeout settings in /etc/systemd/system.conf:

DefaultTimeoutStartSec=20s

DefaultTimeoutStopSec=10s

Note that some services (like networking) set explicit
timeouts and you’ll need to change those as well:

$ sudo vi /etc/systemd/system/network

online.target.wants/

networking.service

TimeoutStartSec=30sec

Performance

Here are some performance metrics you can expect
with the tweaks above and a Gigabit network. The
client is an ODROID-C2 running Ubuntu 16.04, while
the server is the ODROID-XU4. The download and
upload directions are relative to the ODROID-XU4. The
disk attached to the ODROID-XU4 has a write speed of
110MB/s. File transfers transferred an 8GB �le �lled
with zeros (dd if=/dev/zero of=zero bs=1M
count=8000 conv=fsync). Please note that part of the
performance depends on your client as well. I was
able to get better performance with a Linux PC than
with the ODROID-C2 as a client.

Meet An ODROIDian: Ernst Mayer, Mathematician
Extraordinaire
 April 1, 2018 By Rob Roy Meet an ODROIDian

Please tell us a little about yourself. I’ve been living and
working in Silicon Valley for roughly the last 20 years,
doing algorithmic and coding work �rst for several
tech startups and then for larger �rms. Most of that
work was related to EDA software for chip design. I’ve
actually been semi-retired (in the sense that I still
work, but mostly on my own research projects, not for
pay) since getting laid o� from my last large-company
gig 6 years ago. I currently live in Cupertino, the heart
of Apple country, though I never worked there. It’s
nice being close to the coastal hills, but the real estate
prices and rents are really high. My sister and her
family (husband and twin 9-year-old boys) live in the
North bay, so I see them fairly often. I actually come
from a science but non-computer-science
background: my graduate degrees from the University
of Michigan are in Aerospace Engineering and
Mathematics. My PhD thesis was in theoretical �uid
mechanics, speci�cally vortex �ows. Lots of

di�erential equations, applied mathematics and
numerical analysis. My coding background coming
out of college was scienti�c computing, that is,
Fortran. I taught myself the rudiments of C and C++
after moving to Silicon Valley, and learned most of the
rest of what I needed to know about those languages
and CS-style algorithmics and data structures on the
job.

Figure 1 – Ernst visiting the Canadian Rocky Mountains
in 1986

How did you get started with computers? In the context
of the kind of algorithmic and programming work, I
ended up doing both by way of a career and ongoing
research, it’s important to note that I was, based on
my early-college experiences, one of the most unlikely
code geeks ever. I was a freshman at the University of
Michigan in Fall 1981, and as such, was a member of
one of the last few engineering-program gradating
classes which was made to su�er through the
freshman Fortran programming for engineers course
as then constituted. The computer center was housed
in a nondescript structure which was literally under a
pedestrian-overpass bridge, and formally named the
North University Building, but known to everyone by
its acronym, NUBS. Everything was based around a
then-standard mainframe-based tiered-price
timeshare setup, said mainframe being an Amdahl
system which I’m sure made for a suitably budget-
priced alternative to the market-leading IBM 360
series. The real problem, as so often is the case, lay in
the software: a non-IBM system compiler meant a
non-IBM compiler, and while I don’t know what
alternative compiler o�erings Amdahl Corp. may have
had, I do know that the users of the system were
stuck with a somewhat-experimental compiler from
Waterloo U. in Canada. The problem with it was that
the error messaging from same was so cryptic (often
just obscure hexadecimal error codes, lacking even a
program line number), so that for us newbies it
e�ectively amounted to a binary syntax-error
messaging system: 1 = “there are >= 1 syntax errors in
your code, don’t ask me where, so good luck �nding

them”, and 0 = “congratulations! there are 0 syntax
errors in your code, here are your (probably wrong)
outputs.” Even that would have been annoying but
workable, but for the second major issue was that
there were exceedingly few line-printer terminals and
even fewer actual interactive terminals available, all of
those were 100% occupied by computer science grad
students, so we were limited to punched-card
machines, for which there were also often wait lines.
So once you �nally got a seat at one of those and
transcribed your handwritten initial attempt at a
program for the current assignment on your little
deck of playing-card-thick paper cards, you had to
vacate your seat, take your card deck over to the
nearest ri�e-reader machine, maybe wait in line
some more there, then head over to the paper-
printout dispenser window to retrieve your program
listing and, if you were lucky, get your outputs. Got a
syntax-errors-remain crypto-message? Spend time
poring over your program listing, identify likely
error(s), then proceed back to the wait line outside
the punch-card machine room. No syntax errors but
errors in your outputs? More of the same. The �nal
insult was that us bottom-rungers were allotted some
ridiculously small amount of timeshare-account
credits. I seem to recall $2 of said funny-money
credits for the entire semester’s projects, with no
option to add more. Given the pricing system which
was in place, the only way to turn said amount into a
remotely-reasonable number of the above-described
debug cycles was to use the facility in the dead of
night, when prices were at their cheapest. The net
result was that even the simplest 50-line
programming assignment almost invariably turned
into a hellish all-night work session.

Figure 2 – Ernst in his o�ce at Case Western Reserve
University in 1997, in front of a DEC Alpha workstation,
the �rst true 64-bit RISC architecture, which was a �ne
system for its day, but his ODROID-C2 has an order of
magnitude more computing power

As a consequence, for the rest of my undergraduate
days, the only kind of coding I did was on my trusty
HP-41C programmable calculator. If someone from
the future had come back and told my then-self that I
would end up writing (almost entirely from scratch)
and maintaining a program consisting of on the order
of a half-million lines of code, I would’ve told them
they were crazy. Of course fate, as it so often does,
had other plans. While in graduate school, I earned
extra money by working roughly 20 hours per week
doing carpentry and maintenance work for a local
landlord, and spent as many of my remaining waking
hours as were left available indulging my love of
“bashing around in the great outdoors”: rock climbing
and summer mountaineering trips, cycling, martial
arts.

In the summer of 1987, having completed my
master’s degree I was preparing to start a PhD
program in experimental �uid dynamics when during
a mountain-biking session I took a nasty head�rst spill
and ended up with a broken neck and paralysis from
the chest down. So crawling around an equipment-
�lled experimental lab was out; math and computer
work were in. Thankfully by then the university
computing labs had moved to workstations and PCs,
so I was able to do most of my graduate-research
coding on DEC Vax workstations, with quality

software, a vastly di�erent experience than I’d had as
a freshman.

Figure 3 – Ernst with Stanford’s Donald Knuth and a
bunch of fellow Mersenners at the Mountain View Tied
House to celebrate the discovery of the 39th Mersenne
prime, M(13466917), December 2001

What attracted you to the ODROID platform? As I noted
in last month’s prime numbers article in ODROID
Magazine, after spending much of the past �ve years
writing assembly code for the various �avors of the
x86 SIMD vector-arithmetic instruction set (SSE2, AVX,
AVX2+FMA3, AVX512), last year I was also considering
a �rst foray into adding SIMD support to a non-x86
processor family, and the ARMv8 CPU family’s 128-bit
vector support nicely �t the bill. After doing some
homework regarding a low-cost but still reasonably
high-performance development platform for that
coding e�ort, the ODROID-C2 emerged as the top
choice. I get about 50% greater throughput for my
code on the C2 than on Raspberry Pi3. I also got
performance benchmarks on a pre-release version of
the ODROID N1 thanks to an ODROID forum user who
was selected as one of the beta testers for the N1,
and it looks very promising, using both of the N1’s

CPUs (dual-core Cortex a72 and quad-core Cortex
a53), I get more or less the same throughput for the
“little” a53 socket as for a C2 (which is based on the
same quad-core CPU), and the ‘big’ dual-core a72 CPU
delivers about 1.5 times that throughput. Running
jobs on both sockets simultaneously cuts about 10%
o� each of those single-socket throughputs so we
don’t get quite 2.5 times the C2’s total throughput, but
it’s still more than double that of the C2. So the C2
was de�nitely a good choice as my �rst ODROID.

How do you use your ODROIDs? Last year, the 4-5
months after buying my C2 were spent doing heavy-
duty inline-assembly coding, debug and performance
tuning. Since releasing the ARMv8 code I’ve used my
C2 pretty much the same way I hope other users of
my code will do, large-prime-hunting for the GIMPS
distributed-computing project. (In case anyone is
wondering, I neither chose the project acronym nor
take any o�ense from it.) It’s also handy to have a
machine with a di�erent version of Linux and GCC
installed than either my Macbook or my big Intel
quad-core system, in case I need to track down a
build issue that looks like it may be compiler or OS-
version related.

Which ODROID is your favorite and why? The ODROID-
C2 of course, at least until the N1 goes on sale.

What innovations would you like to see in future
Hardkernel products? I’m a throughput hog, so I guess
my answer boils down to “more sockets!” In particular,
I’m interested in how many ODROID boards it would
take to compete with a high-end Intel quad system,
and how the respective prices for those similar-
throughput options compare. Based on the relative
performance of my Intel Haswell quad and the
ODROID-C2 and N1, we’d need around 20 or so C2’s
to match the Haswell, and around 10 N1s. Once one
gets to “around 10” the notion of that kind of compact
multi-board bundle becomes no longer unreasonable
to contemplate. The price based on the estimated
retail price of the N1 is still a little higher than one
would like, but not by much. Anyway, those are the
kinds of daydreams this ODROIDer has. I also think
linux micro-PCs are a great way to get kids interested
in computers in a way that avoids the “walled garden”

e�ect of PCs running proprietary OSes; I think maybe
some kind of educational-outreach initiative to get
such systems into the hands of low-income school
children would be worthwhile for the Hardkernel folks
to look into. That’s the kind of thing that might attract
government or private-foundation grant money to
sponsor it.

What hobbies and interests do you have apart from
computers? I’ve always been a person who likes to
work not only with his head but also with his hands.
One thing coding and mathematics lack is the tangible
satisfaction that comes with physically building
something, so I always like to have some kind of
handicraft project going to ful�ll that need. A couple
years ago I built a really sturdy workbench using
salvage lumber, mostly discarded heavy-duty
computer-equipment shipping pallets. This winter’s
project was to build a display mount for a large (45kg)
iron meteorite I’d bought some years back, out of a
travertine limestone base topped with a block of
natural sandstone drilled to hold three lengths of
steel rod to act as a tripod to cradle the meteorite.
The drilling proved to be the hardest part – one
expects sandstone to be fairly soft and easy to work,
but this block was sand which had apparently eroded
from some kind of hard mineral, it ended up taking a
diamond-encrusted hollow-core drill and hours of
steady heavy pressure using a drill press and water to
lubricate things. I went through a lot of ibuprofen that
week!

Figure 4 – Ernst is currently building a display mount for
his iron meteorite

What advice do you have for someone wanting to learn
more about programming and mathematics? Find a
problem that really interests you which can serve as a
learning vehicle for these subjects. I’ve had several
such in my career, since my PhD research had aspects
of di�erential equations, asymptotic analysis,
perturbation theory, and linear algebra and
eigensystems. My prime number work involves large-
integer arithmetic and signal-processing algorithms,
vector-arithmetic assembly code, plus a fascinating
rich history featuring some of math’s brightest
luminaries. The world of science is full of such
interesting problems; believe me, you’ll know when
one such grabs a hold of you. Making time in our
distraction-�lled and money-ruled modern world to
pursue it, that is perhaps the trickiest issue.

Figure 5 – Ernst’s �rst contribution to the �eld of
computational number theory in 2002

