

Linux Gaming – DOSBox, an x86 DOS Emulator: Play Your Original
DOS Games in HD
 December 1, 2018

DOSBox is an x86 DOS Emulator that not only emulates the x86 architecture, but also
emulates a common 1990s-era DOS environment. With DOSBox, you can replay your

old games and play them on modern hardware, since there are many interesting and legendary DOS
applications that aren’t available for Windows or

Coding Camp – Part 9: Make A Portable Handheld Weather Station
 December 1, 2018

Let us learn how to access various weather data and share it with your mobile devices
via WiFi connectivity.

The ODROID-GO Tricorder Project
 December 1, 2018

For those of you who do not know what a Tricorder is, allow me to explain: In the
newer Star Trek series, characters often carry a mobile device used for things like
measuring rips in the space-time continuum and declaring “He’s dead, Jim.”

Building a Commodore 64 Emulator
 December 1, 2018

This emulator allows one play to games designed for the Commodore 64 8-bit system.

Coding Camp – Part 10: Measure the distance with Ultrasonic
 December 1, 2018

Let us learn how to use GPIO output, IRQ input and system timer with a Ultrasonic
distance measuring module

Introducing NEMS Linux: Part 3 – Con�guring Service Monitors on
NEMS Linux
 December 1, 2018

The intention with these articles has been to introduce you to NEMS Linux in such a
way as to arm you with useful knowledge that gets you up and running immediately.

These aren’t intended to appear as documentation, but rather a technical article that gives you ideas as to how

ODROID-H2 Part 2: Bios Features and Remote Access
 December 1, 2018

Like a generic PC, the ODROID-H2 has a soldered 8MiB BIOS Flash ROM on the board.
It meets the UEFI Speci�cation 2.6 and the PXE boot requirement. However, Intel UEFI
�rmware doesn’t support CSM version 2.0 for legacy OS booting such as DOS, XP,

Windows 7, and so on.

Building RetroArch
 December 1, 2018

If you are looking for a frontend to game emulators, you can try RetroArch. It has been
ported to the ODROID-XU4 family of Single Board Computers (SBC’s). You can follow
the steps below to install and use it on your system.

Meet An ODROIDian: Kamots Tech
 December 1, 2018

I live in Florida (aka the Sunshine State), where I was born and raised. I have always
lived in Florida because it is warm, there’s so much to do, and the IT industry has been
growing steadily with a lot of promise on the horizon. I went to college for

Linux Gaming – DOSBox, an x86 DOS Emulator: Play Your
Original DOS Games in HD
 December 1, 2018  By Tobias Schaaf  Gaming, ODROID-C0, ODROID-C1+, ODROID-C2, ODROID-XU4

DOSBox is an x86 DOS Emulator that not only
emulates the x86 architecture, but also emulates a
common 1990s-era DOS environment. With DOSBox,
you can replay your old games and play them on
modern hardware, since there are many interesting
and legendary DOS applications that aren’t available
for Windows or Linux.

DOSBox is very stressful on many computers, since
you normally need a high-end PC to emulate a 486 at
33MHz. Since the ODROID uses a completely di�erent
architecture (ARM vs X86), it has even more work to
do during emulation. Despite its complexity and
multiple layers, DOSBox runs surprisingly well on the
ODROID platform.

Some time ago, I compiled an ARMv7-optimized
version of DOSBox which appeared to be running
faster than the stock DOSBox version that comes with
the o�cial distribution. I took some time to compare

these versions and �nd out exactly what is improved
by using an ARMv7-optimized build.

Below you will �nd a series of side-by-side tests that
highlight the di�erences between the generic build of
DOSBox, and a build that is speci�cally compiled for
ARM. The custom build of DOSBox for ARMv7 may be
downloaded from my repository at
http://bit.ly/1DhCv6l.

Con�guration

Con�guring DOSBox can sometimes be di�cult. While
most games run �ne with the basic settings, others
only run with a very speci�c con�guration, so I chose
a set of values that worked best for the original
version of the game Quake, since it’s very demanding
on the hardware.

What’s remarkable about Quake is that the game
itself is in 3D without requiring a graphical desktop

environment. In contrast to games like “Duke Nukem
3D” ,which contains some 3D objects and use 2D
sprites in many situations, Quake was already using
3D models, similar to the models used in later games
on Windows, which was very impressive for that time.

There was no easy way to �nd the right settings, and
after a period of experimentaiton, I ended up with the
following results, with frameskip and aspect ratio
turned o�:

core=dynamic

cputype=pentium_slow

cycles=fixed 32000

cycleup=500

cycledown=300

memsize=32

scaler=normal3x

Dynamic cores should be used for any value of �xed
cycles over 20,000. Pentium_slow is the CPU with the
most features, and I set the cycles to 32,000, which is
very high. Some test programs reported it to be a
1285 MHz fast Pentium CPU. I chose such a high
number because of Quake, since at 32,000 cycles it
gives the most �uid experience on both DOSBox
versions.

Tests

After performing a variety of tests, I discovered that it
was actually hard to �nd some good benchmarks. I
remembered some benchmarking applications from
back when DOS was popular, but they were hard to
�nd. However, I did �nd a test environment for
performing di�erent benchmarks under DOS called
DOS Benchmark, which is available for download
from http://bit.ly/1ttzaRR.

DOS Benchmark o�ers CPU, GPU, and memory tests,
as well as demo versions of the games Doom and
Quake for benchmarking the environment. I tried to
run every test available, but not all of them were
working, although I did �nd a few that performed
nicely. For instance, I found a test with a spinning 3D
cube running in DOS, which has some great visuals,
and ran relatively fast on the ODROID.

Figure 1 – Spinning cube under DOS

Figure 2 – Stock Debian version of DOSBox

Figure 3 – ARMv7-optimized version of DOSBox

3DBench test

The ARMv7-a optimized version was nearly 17% faster
in this test. Unfortunately, that test is not very reliable
if you change the CPU cycles as I did. I was able to
achieve results with over 200 FPS with values like
100,000 CPU cycles, but even with these high
numbers, the emulator was far from working better
or even faster. I could see that the video output was
lagging and skipping frames, but the test still got high
scores.

Figure 4 – 3D Bench test using stock build

Figure 5 – 3D Bench test showing di�erence in results
using ARM build

Benchmark

The CPU tests were showing that the ARMv7-a
optimized version performs somewhat better. An
improvement of around 30% was common when it
came to CPU computing comparisons.

Figure 6 – CPU benchmark using stock build

Figure 7 – CPU benchmark using ARM build, which is
clearly faster

Memory issues

While some benchmarks worked better in the ARM
version, I saw some major issues in some tests when
it came to the ARMv7-a optimized version. Some tests
didn’t even run on the ARMv7-a optimized version of
DOSBox, or causes strange behavior. Only the stock
Debian version was running 100% of the tests
correctly. (Figure 8 – CACHECHK was only working on
the stock Debian version of DOSBox, and properly
identi�ed the CPU)

For example, there was a memory test which used
blocks of di�erent sizes and did some operations on
them so that in the end the di�erent blocks added up
to 24MB in total. It operated on 384 x 64KB blocks
and gave a result on how fast the memory did the
computing. The same test on the optimized version
resulted in very di�erent results. Not only did the
ARM test took approximately 10 times as long to run,
the values were completely inaccurate. Instead of
24MB in results it added up blocks of 512 MB and
more at a ridiculous speed.

Some tests went so high, that it went out of scale and
resulted in either a negative speed or with high
exponents calculating ten thousands of megabytes
per second. Other tests didn’t start at all, or caused
the emulator to freeze.

Testing tools

I tried some other testing tools for benchmarking the
graphics performance of the system, like the spinning
cube and VideoDOS, which sometimes had very odd
results. Because the graphical tests are just
benchmarks, and don’t directly relate to gameplay

responsiveness, I did some hands-on testing with
some of my favorite games as well.

Figure 9 – Graphical test on the stock Debian build of
DOSBox

Figure 10 – Graphical test on the ARM build of DOSBox.
This graphic tests gave odd results: some tests seemed
to run faster with more colors and in higher resolutions,
while others seemed normal)

Figures 11 and 12 – Results of VideoDOS of the ARM
optimized version (top) and the stock Debian version
(bottom)

Games

The benchmark package included two games, Doom
and Quake, since both were very commonly played
during the golden age of DOS, and o�ered some nice
benchmark features in demo mode. However, the
benchmark build into Doom did not work correctly,
and claimed to nearly always be running at nearly full
speed, although it was far from it. (Figure 13 – The
Doom DOS version is playable but not very smooth on
DOSBox, but performs much better as a native Linux
port)

Instead of using the built-in benchmarks, I did my own
testing and compared the time that it took the games
to do a full demo run. The results were very surprising
for me: Demo 3 took about 108 sec to complete a full
demo run on the ARMv7-a optimized version of
DOSBox, and on the stock Debian version of DOSBox
it took 156 sec instead. That’s a nearly 45% increase in
speed for the ARM version.

Even more dramatically, you could see the di�erence
when playing Quake. A demo run for Demo 3 took
147 sec on the optimized version and 248 sec on the
stock Debian version, which is approximately 70%
faster! After all the benchmarking, I wanted to see
how well the emulator performs in a real gaming
experience, and soon found out that the settings that
I had originally chosen did not work well for any other
games, so I changed the settings again and ran a
couple of test games. After I tuned down the cycles to
6,000 instead of 32,000, Dune 2 was running perfectly
�ne, with nice, smooth gameplay. The sounds, music
and voices were all good, and I had no other issues.

I also tried a couple more demanding games, such as
Prisoner of Ice, which is a very nice adventure game

with some movie cut-scenes and an option to either
run in 320×240 resolution or in 640×480. The last one
even o�ered some other features such as better
fonts. Both versions were running �ne on DOSBox. I
also found the same superior performance while
playing Space Quest 6.

Results

The ARMv7-a optimized version runs signi�cantly
better than the stock Debian version of DOSBox. If I
would have to estimate a number, then the optimized
version is, on average, 10 to 15% faster than the
version from the Debian repository. Sometimes, it
was even far faster than that, such when running
Quake.

The faster results seem to be related to some math
optimizations inside the emulator, which may also
create issues as a side e�ect, especially with memory
operations. This, in turn, may cause glitches in some
games, or prevent them from running properly.
Besides that, the ARM optimized version is the better
version when it comes to speed.

From my previous testing, I can say it’s even fast
enough to handle Windows 3.11 or even Windows 95.
Most games should run nice on both emulators but
run are just a little better on the ARM optimized
version.

Additional con�guration

When I was done with the testing played some games,
I changed my settings to the following options, which I
found worked well with many games:

core=auto or dynamic

cputype=auto

cycles=fixed 3000

memsize=31

I also found that DOSBox is able to use glshim
together with its opengl renderer using the output
option:

output=opengl

Finally, I changed the sdl settings:

fullscreen=true

fulldouble=true

fullresolution=1280x720

windowresolution=original

output=opengl

These options start the game in fullscreen mode, and
when used together with
LD_LIBRARY_PATH=/usr/local/lib/, you can run the
emulator with OpenGL support.

Other games

As you can see from the chart below, games vary a lot
in playability, and there is no single setting �le that
works with all games. I also found that the “auto”
mode on cycles does not really work well. The 100%
speed it uses on heavy games is often worse than
using a �xed cycle value.

When using DOSBox for your own games, I suggest
starting at a cycle value of 3,000, and working your
way up until the game starts getting slow again, then
taking a few steps back. This should result in the
optimum playability for your favorite DOS games.

Game Cycles Infos Comments

Sid Meier’s
Colonization

1,500-3,000 Game runs
best with
rather low
cycles.
 Besides
that, it’s
running very
�ne with no
issues or
sound
drops.
 However,
the intro on
the �rst
game start
takes a long
time to play
through.

Shadow
Warrior

15,000-
20,000

The game is
laggy, and
not playable

Terry
Pratchett’s
Discworld 1

3,000-6,000 Game ran
�ne without
any issues

Syndicate 6,000-10,000 Game ran
�ne without

Does not
run with

any issues glshim

Wing
Commander
I

2,000-4,000 Game ran
�ne without
any issues.
 In my
opinion, the
Amiga
version has
a much
better
soundtrack

You should
use a 3x
scaler here

Prisoner of
Ice
(640×480)

2,000-8,000 Game ran
�ne with
only a minor
issue with
the sound
cracking
occasionally

Space Quest
6

~12,000 Game
mostly runs
at full speed,
but has

some slight
stuttering in
the music,
and the text
is too fast

Dune 2 3,000 Game
seems a
little slow
but
generally
good and
without
issues

XCom Series 1,000-15,000 Works well
with only
slight speed
issues

Dark
Legions

~20,000 Works well
with only
slight speed
issues

Coding Camp – Part 9: Make A Portable Handheld Weather
Station
 December 1, 2018  By Justin Lee  ODROID-GO, Tinkering, Tutorial

Let us learn how to access various weather data and
share it with your mobile devices via WiFi connectivity.
Note that the Weather Board 2 is additionally
required
(https://wiki.odroid.com/odroid_go/arduino/30_wea
ther_station).

Before we begin, this Coding Camp will use a web
browser to show weather information. To make
things go smoothly, make sure you have the following
two bullet points meet. Make sure that you’ve
followed the Arduino setup guide.

Figure 1 – You can have a portable Weather station in
your hand

Requirements

Make sure that you have these products:

ODROID-GO

Weather board 2

https://wiki.odroid.com/odroid_go/arduino/30_weather_station
https://wiki.odroid.com/odroid_go/arduino/01_arduino_setup
https://www.hardkernel.com/?s=weather+board+2

A MicroUSB cable

Setup the development environment for Arduino on
your system. Before proceeding with this guide,
attach Weather board 2 to ODROID-GO and connect it
to the PC via micro USB cable.

Setup SPIFFS

SPIFFS stands for SPI Flash File System. You can visit
https://github.com/me-no-dev/arduino-esp32fs-
plugin to see full documentation about SPIFFS.
ODROID-GO has a small (but enough to use) �ash
memory which you can upload data by using this tool.
Download a compressed �le from this link (ESP32FS-
v0.1), then extract the ESP32FS directory to one of the
following directories, depending on your operating
system:

Windows: %USERPROFILE%DocumentsArduino ools

Linux: ~/Arduino/tools

Figure 2 – Arduino Tools directory

(Figure 2 – Arduino Tools directory)

Create the tools directory before extracting if it
doesn’t exist. Open Arduino IDE, and you can see the
Tools → ESP32 Sketch Data Upload menu.

Figure 3 – upload the sketch

(Figure 3 – upload the sketch)

Import the sample to the IDE

Click the Files → Examples → ODROID-GO →
Applications → Weather_Station menu to import the
Weather station example.

Figure 4 – Arduino Application Selection

Then, you will see a new window with the example
code appear.

https://github.com/me-no-dev/arduino-esp32fs-plugin
https://github.com/me-no-dev/arduino-esp32fs-plugin/releases/download/v0.1/ESP32FS-v0.1.zip

Figure 5 – Weather Code

Compile and upload the binary

This guide assume that the port number is COM3. It
might be di�erent from yours. Verify and compile the
sketch by clicking Sketch → Verify/Compile menu, or
by pressing the CTRL-R shortcut.

Figure 6 – Compiling Sketch

If the compiling completes without any issue, upload
the compiled binary by clicking Sketch → Upload or by
pressing the CTRL-U shortcut.

Figure 7 – Uploading the Sketch

You can omit the compile process since its done
automatically when you just upload without doing a
compile before. You will know the uploading is
complete when the message: “Hard resetting via RTS
pin…” appears.

Upload the data

This example has a web server program to serve
measurements via a web page. To see that page, you
have to upload the web page data to the ODROID-
GO’s �ash memory. SPIFFS lets you do that. If you click
the Tools → ESP8266 Sketch Data Upload menu,
SPIFFS utility will �nd the data directory in the current
library and send it.

Figure 8 – data folder

Click the menu to upload.

Figure 9 – Uploading SPIFFS image

The uploading is completed when the message “Hard
resetting via RTS pin…“ is displayed.

Testing

After the upload completes, the ODROID-GO reboots
automatically. The screen showing each data
measurement appears on the ODROID-GO, and after
few seconds, the blue LED in the middle of the board
turns on.

Visit with your device – PC / mobile

The blue LED indicates that the web server on the
board is ready so that you can connect to it and read
the data from the ODROID-GO’s access point. Find the
Wi� AP named ODROID_GO_**** and connect to it
(the default password is 12345678). Open a web
browser and navigate to 192.168.4.1. This IP address
is set by default. You will see the web GUI showing
each measurement, and the blue LED now keeps
blinking after the socket communication starts. Using
the Network Settings web page, you can set the Wi�
con�gurations such as SSID, IP address, and
password.

Figure 10 – Weather Station Webpage

Figure 11 – Network Settings Webpage

The ODROID-GO Tricorder Project
 December 1, 2018  By Volker Raum  ODROID-GO, Tinkering

Figure 1 – Tricorder

For those of you who do not know what a Tricorder is,
allow me to explain: In the newer Star Trek series,
characters often carry a mobile device used for things
like measuring rips in the space-time continuum and
declaring “He’s dead, Jim.”

Figure 2 – Star Trek Tricorder

Although I earn my money by dealing in software, I
have always had an a�nity for hardware: wiring chips
and other digital components together. I began with
circuits based on standard TTL and CMOS logic chips.

One day, I discovered the ATMEL AVR programmable
series. My journey continued, and I discovered the
coolness of Espressif’s ESP8266. After awhile, I found
the ESP32 (WROOM32) for my projects.

I had already done projects involving sensors (i.e.
BME280) using the I2C bus. I also had projects that
used displays and buttons for visualization and
control. What I never had was a good combination of
those things, packaged together in a nice case with a
battery.

Then Hardkernel popped up with the ODROID-GO–
the perfect combination for me. I’ve had an idea for a
multisensory device for quite a while. Now was the
time to embark on such a project.

Basic Concept

The ODROID-GO has an expansion header with 10
Pins. Three of them are power, one is not connected
and some are for SPI (which would interfere with the
performance of the display). At least two of the pins–
GIO15 and GPIO4–were not used by anything else.
Just enough for I2C. With the ESP32, I2C can be
mapped to almost any IO pin. There is no static
mapping. I2C was it!

Now I had to �gure out which sensors work with I2C.
There are lots of them. After some googling I ended
up choosing these:

BNO055 for orientation (roll, pitch, yaw) and
acceleration.

BME280 for ambient pressure, temperature, and
humidity.

VL53L0X for distance measurement (0-120cm).

VEML6040 for LIGHT measurement (RGB, LUX).

VEML6075 for UV measurement (UVA, UVB => UV
Index).

CCS811 to measure CO2 and VOC gas concentrations.

Mics6417 to measure eight more gases and their
concentration.

MLX90416 to measure the temperature (IR) of objects
-70 to 300 degrees Celsius (like those contactless
thermometers).

Buying

Where to buy the sensors? I decided to look to eBay
and its countless Chinese sellers. It takes about a
month for the sensors to arrive, but they tend to have
the cheapest o�ers. Of course, I ordered multiples of
each type in case I burned one of them. I wouldn’t
want to wait another month to get replacements. One
usually pays about 3-6€ for a sensor. The exception
were the Mics, at about 50€.

Prototyping

After the sensors arrived from China I checked out
each of them by attaching them to the ODROID-GO
via breadboard, writing little test program to produce
serial output and display values on the ODROID’s
screen.

Figure 3 – Breadboard

I also created some experimental soldered boards to
get a better feeling of how it would look in the end.

Figure 4 – Experimental_1

Figure 5 – Experimental_2

Schematics (Overall Wiring)

In general, wiring I2C sensors is pretty simple. I2C is a
bus type interface. Just connect all SCL and SCK pins
together and wire these 2 connections to VCC via
resistors (Pullup).

Additionally, provide power (VCC, GND). The standard
voltage for sensors is 3.3V. Luckily, the ODROID-GO
provides 5V AND 3.3V. Each device in a I2C bus has its
own ID. That way the controller (master) can address
each sensor (slaves) on the bus. Besides the four pins
mentioned, some sensors have additional pins that
in�uence their behavior or let them respond to
di�erent I2C addresses.

In my case, it was not that simple to connect all
sensors since the VEML sensors use the same I2C
address of 0x10. Instead of using tricky logic to get
around it, I decided to use an I2C Switch (TCA9543a).
The one I chose has three I2C ports. One port
communicates with the ESP32 and is the “input” port,
while the other two are connected to the sensors. The
VEMLs are placed at di�erent ports. The switch can be
programmed to hand through the I2C communication
to either port 1 or 2.

From a programming perspective, you have to tell the
switch to activate port 1 or port 2 and then query the
sensors connected to that port. Switch over to the
other port and query the rest of the sensors. Not
really a big deal.

In the end I came up with this schematic:

Figure 6 – Schematics

I used DesignSparkPCB for all my schematics and
then later for transforming the schematics into a PCB
design. It is free and I highly recommend it. You will
be required to register, but this seems to be
mandatory for most things these days and for the
value you get out of it, registration is worth it.

One important factor for PCB software is the ability to
teach it your own components. I tried to �nd
component libraries for the sensors I used, but
couldn’t �nd any that were freely available. I gave up
and just designed them myself, which is possible with
this program.

Printed Circuit Board (PCB)

From the schematics you can create a PCB in
DesignSparkPCB. Due to an excess of wiring, I don’t
think a single layer PCB would be possible. It would
seem that a two-sided PCB would be necessary.

Many PCB tools o�er automatic wiring. Very often this
produces strange wirings, so I opted to route the
wires myself. DesignsparkPCB, like all the other tools,
helps keep you from forgetting wires.

Figure 7 – PCB Layout

Red and cyan indicate the wiring on the top and
bottom layer. Yellow and blue is for documentation
purposes and can be printed on the PCB. That way
you easily see which device will be placed and
soldered in which position.

Having completed the PCB layout, it now needs to be
produced. Some people do this on their own. In the
past I also did it on my own, but I never liked the
chemistry behind it. Additionally, there are 2 layers
involved, which requires a very precise alignment of
the layers. I doubt that I would be able to handle this.
I decided to have it done by a professional company
for about 25€.

Figure 8 – PCB 1

Figure 9 – PCB 2

To lower the costs for the production I decided
against solder resist and documentation printing.

Mounting time

Finally having the PCB in my hand, the mounting of
the sensors via soldering was done easily.

Figure 10 – Assembly Soldering

Doing my �rst software tests to see if all sensors
could be found by the ESP32, I noticed that I made a
mistake in the layout. I intended to have the BME280
on the bottom side of the PCB. Having it soldered on
the wrong side, VCC and GND were connected to the
wrong pins. The BME quit in smoke. Shit happens, 4€
gone. That is why you order more than one. Luckily,
this mistake did not a�ect the other sensors or the
ODROID-GO. The Mics gas sensor costs about 50€
and I only have one of them. Burning this one would
hurt way more. The issue was easily resolved. The
next BME280 I just soldered on top of the BNO055
orientation sensor.

Software (the UI design)

I am not a designer. Making things pretty is not my
thing. I usually work on a functional level. In this
project, I wanted to prove myself wrong and do a nice
user interface for the Tricorder.

From a functional point of view, it was pretty clear
that it is not technically feasible to do a full repaint of
a whole screen (320×240 pixel) just to refresh some
measurement values, maybe several times a second.
The display is just not fast enough for that. Heavy
�ickering would be the result. Nevertheless, some
cool graphic elements would be nice in the UI. This led
to the design having some full-size screens with JPG
background images and empty graphical areas
serving as placeholders inside. In a case where the
screen is rendered for the �rst time, the full
background image is drawn and then the sensor
values are pasted in. For all subsequent value
refreshes, only the placeholder areas for the values

have to be redrawn. This improves the
responsiveness of the UI.

It was also obvious that there were too many
measurement values to put them all into one screen
at the same time. I introduced screens that could be
rotated using the “A” and “B” button.

The hardest thing was to come up with a particular
style for the screen images. I made several attempts
and threw them all away. Then an idea popped up. It
is a Star Trek Tricorder, so I would do it the Star Trek
way. I searched Google Images for Star Trek Tricorder
and tons of inspiring pictures appeared. From then
on, the design style was clear.

I tried several freely available drawing programs, but
ended up with paint.net, which I use for most of my
graphical needs.

Software (the control logic)

You can program the ESP32 using Espressif’s SDK
(ESP-IDF) directly in C++, but the provided
functionality seemed to be on a very basic level.
Arduino is a very popular ecosystem to provide some
abstraction from the low level while still being C/C++.
Another advantage of using Arduino is the fact that a
big bunch of libraries exist for all sensors making it
very easy to use them.

For Arduino you can use the Arduino IDE, which I
started with a few years ago. Then I stumbled about
PlatformIO. It comes as plugin for the ATOM or the
VS-CODE editor. I used both and found that I liked VS-
CODE more.

Getting into detail about how to code for ESP32 in the
Arduino world with VS-CODE would bloat this article.
ODROID magazine already had articles about coding
for the ODROID-GO. It may be more interesting to
mention the things you usually do not do in an
implementation for the ESP32.

I never had to deal with binary �les in my code for the
ESP32. The way to do it for the ODROID-GO (and
ESP32 in general) is SPIFF. SPIFF is a �le system for the
ESP32. You can upload binary �les into a special area
of the ESP32’s �ash memory (the SPIFF partition).

For the ODROID-GO there is a collection of libraries
you can use to address the hardware of the GO
(speaker, buttons, display, even potential sensors).
The display library supports the display of JPG �les
stored in the SPIFF partition.

What you have to do is to upload the JPGs into the
ESP using PlatformIO. After doing that, you can
program the ESP and access the uploaded �les in
your code by providing the �lenames. That makes it
very easy to �ll the GO’s screen with a JPG �le– it
needs one line of code.

Another thing I had to do was modify some sensor
libraries. Those libraries are often written to work
with more than one controller, thanks to the Arduino
abstraction. This leads to some issues if the ESP32
works di�erently in some areas. The changes were
not too many.

The current state of the software

The following images show the various screens I
already designed. As I mentioned before, the screens
can be switched back and forth using the A or B
button.

Initialization Phase

Figure 11 – Init Screen

The sensors need to be initialized. A good time for a
welcome screen. I probably should have cleaned the
screen before taking the photo.

Ambient Sensors

Figure 12 – Ambient Screen

The Ambient Screen holds sensor values from the
BME, the VEML6040 and VEML6075. This is ambient
temperature (in celsius), humidity (in %), pressure (in
hPa), light intensity (in LUX) and the UV index (it’s a
number indicating how dangerous the current UV
level is)

Light Sensor (RGB)

Figure 13 – Light Screen

The light view gives detailed information about the
distribution of red, green, and blue in the visible light.
The exact wavelengths measured by the sensor can
be checked in the VEMLs datasheet.

The distribution is presented in a bar graph for red,
green, and blue.

The light intensity in LUX was already present in the
ambient screen and can be seen here again.

The color temperature indicates if the light is “warm”
or “cold”. Higher values indicate cold light (blue), lower

ones indicate warm light (red)

The Gases View

Figure 14 – Gases Screen

The gases view presents measurements from the
CCS811 and the Mics sensor. Ten gases in total.

The unit of the measurements is parts per million
(ppm). The gases are given by their chemical formulas
since the names did not �t into the screen.

CO – Carbon Monoxide: Can easily cause su�ocation.
Hard to recover from exposure.

H2 – Hydrogen: Together with oxygen you have a high
chance to blow up your house. Also used for rocket
thrusters.

NO2 – Nitrogen Dioxide: Toxic.

C2O5OH – Ethanol: Alcohol. I like that stu� in various
forms.

NH3 – Ammoniac: Intense smell. One source can be
poop. Not healthy of course.

CH4 – Methane: Worse than CO2 in terms of
greenhouse gas. In�ammable if O2 is present.

C3H8 – Propane: People use it to �re things.

C4H10 – Butane: Also in�ammable. Camping gas.

CO2 – Carbon Dioxide: That’s what we exhale and what
plants need to live. Causes trouble as a greenhouse
gas.

VOC – Volatile Compound Gases: Substances in
gaseous form at room temperature. It is not precisely
de�ned which gases are detected. It is just an
indicator. The higher the value the worse it is.

In the screenshot you see that there seems to be
Propane and Butane around the Tricorder. This is due

to the fact that the Mics gas sensor needs some heat
up time before delivering accurate values. I didn’t
want to wait 10 minutes to take the picture.

Distance

Figure 15 – Distance Screen

The distance between the Tricorder and an object it is
pointed at can range 0 to 120cm. It is displayed in
form of a number a bar graph (the white bar).

Temperature

Figure 16 – Temperature Screen

The temperature of an object is displayed the same
way as distance. It is given as a number and a bar
graph (red bar). Unit is Celsius.

Orientation

Figure 17 – Orientation Screen

The orientation was the hardest thing to design a
page for. Simple numbers do not provide an intuitive
meaning. The current solution is surely not the best. I
hope to come up with some better ideas.

To the left, the roll is displayed. If the Tricorder is
rolled counterclockwise, then the blue number to the
left is displayed at the bottom position (as in the
screenshot). If rolled clockwise the number would be
displayed in the upper position, as the angle in
degrees (0-180).

For the pitch, it is the same. If the Tricorder is directed
upwards, the number indicating the rotational angle
is displayed in the top position (as in the screenshot).
If directed downwards, the number is displayed in the
lower position.

The yaw (yellow) is just the angle the Tricorder points
to (north, south, east, west), from 0-359.9 degrees.
This can be used as compass.

Calibration

The sensors deliver measurement values. How
accurate are those measurements? Without a
reference you can’t tell. It is easy to check distance
measurement. Temperature becomes harder. The
light intensity also requires more e�ort–for instance,
�nding a referential measurement device. Almost
impossible to verify are the gas concentrations. I
intend to see how I can improve here.

Implement things like hold/min/max

If you know multimeters, those devices often have the
ability to track minimum, maximum or average
values. Freezing the display in order to display a
measurement for a longer time is also very common.
The Tricorder could need that too. This will make
more use of the ODROID’s buttons.

Wireless measurement export?

Measurements are currently only displayed on the
ODROID’s display. The ESP32 can work with WiFi and
Bluetooth (BLE and classic SPP). The Tricorder could
be extended to provide the measurements “over the
air”. MQTT and BLE are candidates here. I did both
already with the ESP32.

I currently do not see the use case for it in this
project. One possible project is a “measurement box”.
Its measurements could be displayed using your
mobile device. However, for this, the ODROID-GO
would not be needed.

Acceleration

I currently only use the BNO055 sensor for roll, pitch,
and yaw. It is capable of doing more, such as
acceleration measurements (g-forces).

Case

I own a 3D printer. I surely have the plan to create a
case for the Tricorder’s electronics that somehow
snaps to the ODROID-GO case.

Building a Commodore 64 Emulator
 December 1, 2018  By AreaScout  Gaming, ODROID-C2

This emulator allows one play to games designed for
the Commodore 64 8-bit system. It has been ported
to the ODROID-C2 Single Board Computer (SBC).

Figure 01 – Commodore 64 Emulator

Following are the steps involved in obtaining the
source code, applying relevant patches and running
the emulator. I was able to contribute some patches
to the master code base. It was not easy to solve the
various issues, but with some good help from the
project maintainers, it is now available for all.

Checkout the source and apply a patch

First, we need to obtain some prerequisites:

$ sudo apt­get install bison

Then checkout the source and apply the no-border
patch for VIC-II Commodore machines if you wish.
This will remove the border of C64 and C128 machine
models – the games are way better to view without it.
This is more of a quick and dirty way to do it, a better
approach would be to add it to the libretro con�g. If a
game draws inside those borders it will not work and
the application will crash. However, a lot of games do
not draw borders.

$ git clone https://github.com/libretro/vice­

libretro.git

$ cd vice­libretro

$ wget ­O noborder.patch

https://pastebin.com/raw/VwtSDj50

$ patch ­p1 < noborder.patch

You can then start to build a Commodore machine of
your choice. The valid machine types include the
following:

x128

x64

x64sc

x64dtv

x64scpu

xplus4

xvic

xcbm5x0

xcbm2

xpet

You will need to specify the EMUTYPE variable
followed by the machine type, re�ecting your build
choice. If left unspeci�ed, x64 (C64) is selected as the
default.

$ make EMUTYPE=x64 ­f Makefile.libretro ­j7

If you want to build more then one machine type, do
not forget to run clean (make EMUTYPE=x64 -f
Make�le.libretro -j7 clean) on the project otherwise
the core will not work.

Apply RetroArch con�g

To apply the RetroArch con�guration, copy the binary
into RetroArch core folder:

$ cp vice_x64_libretro.so

~/.config/retroarch/cores/ .

Start RetroArch select the vice core, then either start
the core with or without a game. Press the Guide
button on your game controller or F1 on the keyboard
and scroll down to Options, select it and disable
DriveTrueEmulation->OFF, and set Controller0Type to
“joystick”

I also enable a Aspect Ratio of 16:10, which I think is a
good compromise between 4:3 and 16:9:

Settings ­> Video ­> Aspect Ratio ­> 16:10

With the Start button, you activate the nuklear GUI
settings (select button has to pressed once to activate
mouse). From there, you can choose the C64 Joyport,
machine cpu, sid type and more. The Onscreen
keyboard is activated with the “X” button (Xbox
layout).

References

http://vice-emu.sourceforge.net/
https://forum.odroid.com/viewtopic.php?
f=98&t=32173#p233998
https://youtu.be/ItkppnXWd9U

http://vice-emu.sourceforge.net/
https://forum.odroid.com/viewtopic.php?f=98&t=32173#p233998
https://youtu.be/ItkppnXWd9U

Coding Camp – Part 10: Measure the distance with Ultrasonic
 December 1, 2018  By Justin Lee  ODROID-C2, Tinkering, Tutorial

Let us learn how to use GPIO output, IRQ input and
system timer with a Ultrasonic distance measuring
module. Note that the distance sensor is additionally
required
(https://wiki.odroid.com/odroid_go/arduino/31_ultra
sonic_distance_meter).

Figure 1 – You can have a portable Ultrasonic distance
meter in your hand

Requirements

Make sure that you have these products:

ODROID-GO

Ultrasonic Ranging Module HC – SR04

Jumper Wires and a Breadboard full size or half size

An auxiliary battery if using it portable

This module requires 5V input power, but ODROID-GO
outputs 3V3 for the power pin(#6) on its header pins.
Thus, it is required to use the 5V USB VBUS pin(#10)
with an external USB power source.

Alternatively, you can use a Step-up DC-DC converter
and a level shifter.

A MicroUSB cable

You will also need to set up the development
environment for Arduino on your system.

Hardware Setup

Please refer to Figure 2 when you set up your
hardware. We used the following parts:

Ultrasonic sensor: HC-SR04

https://wiki.odroid.com/odroid_go/arduino/31_ultrasonic_distance_meter

Step-up DC-DC 3V3 to 12V(set to 5V for now) converter:
MT3608

Logic level converter: BSS138

ODROID-GO: fritzing_odroid-go.fzpz

Mini-360 DC-DC Buck converter: mini-360_dc-
dc_buck_converter.fzpz

HC-SR04: hc-sr04.fzpz

Figure 2 – Wire Diagram

Next, download the Fritzing example �le from odroid-
go-ultrasonic-sensor.fzz.

Import and Compile, Upload to ODROID-GO

Click the Files → Examples → ODROID-GO →
Applications → Ultrasonic_Distance_Meter menu to
import and press CTRL-U to compile/upload.

Figure 3 – Load Arduino Ultrasonic Distance Meter
Application

Uploading is complete when the message “Hard
resetting via RTS pin…” is seen.

Testing

After the upload completes, ODROID-GO reboots
automatically. The screen shows a measured distance
in inch, cm units when an obstacle is detected at the
front of the Ultrasonic sensor. If the measurement
conditions are not met, such as a distance that is too
far or too short, the result text on the screen will be
colored red. If it measures normally, the text will be
colored green.

Introducing NEMS Linux: Part 3 – Con�guring Service Monitors
on NEMS Linux
 December 1, 2018  By Robbie Ferguson  Linux, Tutorial

This is the third part in an introductory series to NEMS
Linux: the Nagios Enterprise Monitoring Server for
ODROID devices. If you haven’t read the �rst two
parts (October and November issues of ODROID
Magazine), please start there as the lessons build
upon each other. My intention with these articles has
been to introduce you to NEMS Linux in such a way as
to arm you with useful knowledge that gets you up
and running immediately. These aren’t intended to
appear as documentation, but rather a technical
article that gives you ideas as to how NEMS Linux can
be used in your environment. This month, however,
we’ll be geeking out together as I provide two key
exercises that you may �nd useful in monitoring your
network assets with NEMS Linux.

In this month’s exercises, you’ll learn the skills needed
to con�gure NEMS Linux to perform the following:

Tell if your web site is up, and notify you if it has been
down for more than 10 minutes: monitor your own,
your customers’ or any http/https web site for uptime
or slow response time.

Monitor the state of a speci�c TCP/UDP port on a
network connected device, and notify you if it stops
responding: tell if your local blockchain node has
stopped responding on port 8333, Apache2 has
stopped responding on port 443, or monitor the state
of openssh running on your server on port 22. These
are just examples. The options are limitless.

Understanding Noti�cation De�nitions

Before we get into our exercises, a quick glossary will
help you understand what the single-character
noti�cation options mean. Refer back to this list
during the exercises to understand what we’re
actually doing when we specify, for example,
w,u,c,r,f.

When you see w,u,c,r,f,n, these are the de�nitions:

w Notify if in warning state,

u Notify if in unknown state,

c Notify if in critical state,

r Notify if recovered from a previously bad state,

f Notify if the service is �apping (on and o� and on and
o�)

n Never notify.

When you see d,u,r,f,s,n, these are the de�nitions:

d Notify if host is down,

u Notify if host is unreachable (eg. Internet down),

r Notify upon recovery,

f Notify if the host is �apping,

s Notify if a scheduled service downtime begins or
ends,

n Never notify.

Exercise 1: Monitor Your Web Site with
check_http

Your web site is the face of your business. If it ever
goes down for any reason, or becomes sluggish, it’s
important to be proactive in remedying the situation.
The only thing worse than having a customer contact
you to let you know your web site is down is realizing
it might have been down for a week and the
customers during that time didn’t let you know. They
just went elsewhere. Having your web site become
sluggish or unresponsive can also damage your
organic SEO standings.

NEMS Linux can keep a close eye on your web site
and send you an alert by email, Telegram or Pushover
if your site goes o�ine, or becomes unresponsive or
sluggish. This also makes NEMS Linux a fantastic tool
for web designers and hosts who want to ensure their
customer sites are always up so the customer doesn’t
notice any downtime. If your site is hosted over SSL,
NEMS can even notify you if your certi�cate has
expired – or is about to expire. There are just so many
options since NEMS Linux has been built to monitor
everything.

In our �rst exercise this month, we’ll use the built-in
check_http command. For my example, I’ll use

https://nemslinux.com/ – I would suggest you do the
same for the sake of the lesson, and then try changing
the Host to your own domain once you understand
how everything is connected. Remember, I’m
expecting you’ve already completed the previous two
articles in ODROID Magazine’s October and
November 2018 issues. If not, go back and read those
�rst. If you’re ready, let’s get right into it! It may
appear onerous as you glance over the following 6
steps, but keep in mind once you create your con�g,
you can reuse it for as many web site hosts as you like
by simply assigning your host to the web_site_ssl
hostgroup, which you’ll learn to create below.

Open NEMS NConf and follow these steps:

In preparation, we need to make sure our check
command is ready for our use case. While the default
is changing in NEMS 1.5, if you’re on NEMS 1.4.1 you
will need to change the check command to use
hostname checks rather than IP address checks.

Show your checkcommands list.

Edit check_http

Currently the command line uses -I %HOSTNAME%,
with -I meaning “IP Address”. Change that to -H
(hostname) so it now reads … -H %HOSTNAME% …
Now we can use our web site’s hostname or an IP
address for the check_http command.

Save your change.

Figure 1 – Modify check_http to use Hostname Instead of
IP Address

Next up, we need to setup our check-host-alive
command, which is used to ping hosts to determine if
they are up or down. My web site hostname will only
respond on IPv4, though the default check-host-alive
command in NEMS 1.4.1 uses IPv6. Rather than
editing the sample command, let’s add a new one
based upon it, but this one will only use IPv4. That

https://nemslinux.com/

way, we can still use the old command if we need IPv6
for a di�erent device.

Show the misccommands list.

Edit check-host-alive

Highlight and copy the entire command line to your
clipboard.

Click Add next to misccommands to add a new
command.

Name your new command check-host-alive-ipv4

Paste the command line from your clipboard.

At the very end of the command line, simply add a
space, followed by -4 to tell it to use IPv4 for this check.

Save the new command.

Figure 2 – Create New misccommand to check-host-alive
Using IPv4

Our commands are ready for us, so now it’s time to
setup our hostpreset. We want to create one for IPv4
Web Sites. That way, we can reuse the preset for every
web site we want to monitor with NEMS Linux.

Add a new host preset.

Name your preset Web Site IPv4

Set the host alive check to the new command you
created in Step 2: check-host-alive-ipv4

Save your host preset.

Figure 3 – New Host Preset for IPv4 Web Sites

So far, everything we’ve done can be reused for any
web site whose hostname resolves to an IPv4
address. From here forward however, we’ll be setting
up our host group speci�cally for a secure (SSL) web
site.

Add a new hostgroup.

Call this web_site_ssl

Leave everything else as is and save your new
hostgroup.

Figure 4 – New hostgroup for web_site_ssl

Why would we create a new hostgroup if it has no
settings beyond a name? Well, this is where the magic
happens. We now have a check command, a check
host alive command, a host preset and a hostgroup.
Now, we can link them all together, starting with an
Advanced Service. Remember, the idea here is that
everything we do can be assigned to as many hosts as
we like. No having to redo all this for the next web
site.

Click Add next to Advanced Services.

Name your service: Web Site (SSL)

Give it an alias: Uptime of SSL Web Site

Set the check period and noti�cation period to 24×7

In assign advanced-service to hostgroup, highlight the
hostgroup we created web_site_ssl and press the
green arrow to add it to the selected items list.

Under contact groups be sure to add admins as well.
Otherwise, you won’t receive noti�cations.

Set your noti�cations as follows: max check attempts:
10 ; check interval: 1 ; retry interval: 5 ; �rst noti�cation
delay: 10 ; noti�cation interval: 30 ; noti�cation
options: w,u,c,r,f

Finally, set your service parameters to: -S –sni

Save your advanced service.

Tip: The -S tells check_http that this site is using SSL,
and the –sni enables SNI (Server Name Indication)
since I use CloudFlare for SSL on nemslinux.com, and
therefore my resolving IP address is associated with
more than one domain name. For your site, if you
have any trouble, try removing SNI by simply omitting
–sni. For the full documentation surrounding the
check_http command, visit the NEMS Linux
documentation wiki page at

https://docs.nemslinux.com/check_commands/chec
k_http

Figure 5 – Creating an Advanced Service to Check SSL
Web Sites

Finally, let’s add our web site host. From now on, this
is the only step you have to take to add more sites to
your NEMS Linux server.

Add a new host.

Set the following:

hostname: https://nemslinux.com

alias: NEMS Web Site

address: nemslinux.com

OS: Linux

host preset: Web Site IPv4 (See what we did there?)

monitored by: Default Nagios

host is collector: no

check period: 24×7

noti�cation period: 24×7

max check attempts: 10

check interval: 1

retry interval: 5

�rst noti�cation delay: 10

noti�cation interval: 30

noti�cation options: d,u,r,f

assign host to hostgroup (are you ready for this?):
web_site_ssl

Save.

Generate your con�g.

Figure 6 – Creating a Host to Monitor IPv4 SSL Web Site

If you followed the steps correctly and my web site is
up, Adagios should report all is well. To test what
would happen if it were to start failing, change the
hostname in the Host to nemslinux.com1 (which
obviously will not respond), and then generate your
con�g again. Once you feel ready, change the Host to
your own web site. If your site is SSL, you should only
need to change the hostname, alias and address of
the host (Step 6). If it’s not SSL, repeat Step 4, but this
time create a new hostgroup called web_site_no_ssl,
and then repeat Step 5, this time, creating a new
Advanced Service called Web Site (Non-SSL), assign it
(5.e) to Web Site (Non-SSL) and leave o� the SSL
parameters in 5.h.

Figure 7 – NEMS Adagios Shows nemslinux.com is UP

Exercise 2: Monitor A Non-Standard Port
with check_tcp

https://docs.nemslinux.com/check_commands/check_http

Here’s a bonus exercise which will help you monitor
the uptime of any TCP/UDP port. NEMS Linux includes
a dummy port listener running on port 9590. The port
listener is cleverly called 9590, and does nothing other
than reply that it is up. This can be used to simulate a
port on another device. Let’s setup a service monitor
on the NEMS host to warn us if port 9590 ever goes
o�ine.

On the left menu of NConf, you’ll see “Services”. Click
“Add”.

Set the Service Name to: 9590

Leave Service Enabled set to: Yes

Set the Check Command to: check_tcp

Set Assigned to Host to: NEMS (this host comes pre-
installed)

Leave Check Period set to: 24×7

Set Noti�cation Period to: 24×7

Leave Service Templates as is, none selected.

Under Contact Groups highlight the ‘admins’ group and
press the arrow pointed right to move it to Selected
Items.

Leave Notes, Notes URL and Action URL blank.

Set Max Check Attempts to: 30

Set Check Interval to: 1

Set Retry Interval to: 1

Set First Noti�cation Delay to: 5

Set Noti�cation Interval to: 15

Set Noti�cation Options to: w,u,c,r,f,s

Leave Active Checking, Passive Checking, Noti�cation
Enabled, Check Freshness and Freshness Threshold
blank.

Leave Assign Service to servicegroup as is, none
selected.

Set Params for check command to the port number:
9590

Press Submit

Press Generate Nagios Con�g, followed by pressing the
Generate button on the next screen to deploy and
activate your new con�guration.

Once the new con�g is running, try failing the service
by opening Monit Service Manager under System on
the NEMS Dashboard. Click on the Process named
9590, and then click “Stop service”. You’ll notice in
around 1 minute the status of 9590 will show as a
problem in all status views (Eg., NEMS TV Dashboard,
NEMS Adagios, Nagios Core), and after roughly 5
minutes you will receive a noti�cation (assuming your
noti�cations settings are con�gured). Once you have
received a noti�cation, visit NEMS Adagios to
Acknowledge the outage. Then, return to Monit, open
the 9590 Process, and click “Enable Monitoring”. This
will re-load 9590 and you’ll soon see it change to a
Recovered state. Once complete, try setting up a new
service to monitor a real host on your network. Simply
change the name of the service to something
appropriate, the host in step 5 (you already know how
to add new hosts if you don’t already have it
con�gured), and the port number in step 19.

Learn More

NEMS has an active Community Forum. I check in
quite regularly to provide free support to users. I also
o�er commercial one-on-one priority support for
those needing a higher level of support. NEMS Linux
is free to download and use. Its source code is
available on GitHub. Download NEMS Linux for
ODROID at https://nemslinux.com/

You can also follow @NEMSLinux on Twitter or join us
on Discord.

Be sure to read my article in next month’s edition of
ODROID Magazine as I unveil the incredible
enhancements of NEMS Linux 1.5 and show you how
to upgrade from NEMS 1.4.1.

About the Author

Robbie Ferguson is the host of Category5 Technology
TV and author of NEMS Linux. His TV show is found at
https://category5.tv/ and his blog is
https://baldnerd.com/.

https://nemslinux.com/
https://discord.gg/e9xT9mh
https://category5.tv/
https://baldnerd.com/

ODROID-H2 Part 2: Bios Features and Remote Access
 December 1, 2018  By Justin Lee  ODROID-H2

Like a generic PC, the ODROID-H2 has a soldered
8MiB BIOS Flash ROM on the board. It meets the UEFI
Speci�cation 2.6 and the PXE boot requirement.
However, Intel UEFI �rmware doesn’t support CSM
version 2.0 for legacy OS booting such as DOS, XP,
Windows 7, and so on. The Main setup menu appears
when you press the “Delete” key in the boot process.

Figure 1 – Main setup menu

This is the Advanced setup menu:

Figure 2 – Advanced setup menu

This is the Boot con�guration menu that allows you to
choose a boot media. ODROID-H2 can boot from
eMMC, USB, SATA and NVMe storages. You can access
them at the same time from the OS.

Figure 3 – Boot con�guration menu

You can change the boot priority in the Boot menu, or
press F7 to temporarily choose the boot media in the
boot process.

Figure 4 – Change boot priority

Wake on LAN(WoL) feature. You can activate the WoL
function on the command line. For example:

$ sudo ethtool ­s enp3s0 wol g

Check the current status.

$ sudo ethtool enp3s0 | grep Wake

$ Supports Wake­on: pumbg

$ Wake­on: g

If you �nd g, the Wake-on-LAN feature is enabled.

If you can, wake up the ODROID-H2 board with this
command from a remote PC.

$ powerwake 192.168.30.4

The WoL feature works only with an Ethernet port
near the HDMI/DP port.

Figure 5 – Three ODROID-H2’s set up with di�erent DDR4
memory

Hardkernel introduced the ODROID-BENCH in order
to give users a chance to use ODROID single board
computers remotely. Now we’ll set up the new
ODROID-H2s with a few di�erent DDR4 memory and
storage combinations.

Figure 6 – Con�gurations for each of our three ODROID-
H2s

They can be accessed through “ssh” with a port
number dedicated to each machine. Your access is
limited to the Docker container in Ubuntu 18.04.1 and
the Linux kernel 4.15.0-38-generic.

Figure 7 – Docker for Ubuntu 18.04.1

Still, you can run a bunch of system commands with
root privileges and grab the hardware information.
You can even run a benchmark tool, but the score will
be very close or slightly lower to the one tested on the
native environment since your access is in the
container.

Figure 8 – Running benchmarks

This is the “iozone” score of the ODROID-H2 unit #1 in
the Ubuntu container.

Figure 9 – ODROID-H2 Unit #1 in the Ubuntu container

If you have any issue accessing the machines on
ODROID-BENCH or other requests, please refer to the
thread at viewtopic.php?f=29&t=32257.

For comments, questions, and suggestions, please
visit the original post at
https://forum.odroid.com/viewtopic.php?
f=29&t=32536.

http://forum.odroid.com/viewtopic.php?f=29&t=32257
https://forum.odroid.com/viewtopic.php?f=29&t=32536

Building RetroArch
 December 1, 2018  By AreaScout  Gaming, ODROID-XU4

If you are looking for a frontend to game emulators,
you can try RetroArch. It has been ported to the
ODROID-XU4 family of Single Board Computers
(SBC’s). You can follow the steps below to install and
use it on your system.

Building and con�gure RetroArch

We need to obtain the source code, apply a needed
patch and build. The small patch basically prevents
the display of the menu with a black background.

$ git clone

https://github.com/libretro/RetroArch.git

$ cd RetroArch

$ wget ­O retro.patch

https://pastebin.com/raw/1SCeb8EG

$ patch ­p1 < retro.patch

$./configure ­­enable­opengles3 ­­enable­

opengles

­­enable­neon ­­enable­floathard ­­enable­

freetype

$ make ­j7

$ sudo make install

Now start it with the command:

$ retroarch

Apply some useful settings

While you do not have to use the settings listed
below, I have included them so you can use them if
you wish, as a starting point and tweak them to your
preference later.

Update the Assets (Icons, background pictures and
stu�), you can �nd it here:

MainMenu ­> Online Updater ­> Update Assets

I recommend you update these packages: Core Info
Files, Joypad Pro�les, Database, GLSL Shaders. You
can use the Core Updater to get some emulators.

Enable Advanced Settings:

Settings ­> User Interface ­> Show Advanced

Settings ­> ON

Enable Threaded Video – It will enhance the
emulation quite a lot:

Settings ­> Video ­> Threaded Video ­> ON

Enable FPS counter too. It is helpful to see how fast
the emulation runs, especially when you setup things:

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Display Framerate ­> ON

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Show frame count on FPS

Display ­> OFF

Settings ­> Driver ­> Audio Driver ­>

alsathread

and if you are on VU5A:

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Notification size ­> 18

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Notification X position ­>

0.010

Settings ­> Onscreen Display ­> Onscreen

Notifications ­> Notification Y position ­>

0.010

If you already have games saved in a folder on your
ODROID-XU4, you can scan for them:

Import Content ­> Scan Directory

When prompted, you can select the root game folder
to let RetroArch scan for your games. They will appear
on the right side of the menu after some time.

References

https://www.retroarch.com/
https://forum.odroid.com/viewtopic.php?
f=98&t=32173#p233821
https://youtu.be/6Ewgov7_TXM

https://www.retroarch.com/
https://forum.odroid.com/viewtopic.php?f=98&t=32173#p233821
https://youtu.be/6Ewgov7_TXM

Meet An ODROIDian: Kamots Tech
 December 1, 2018  By Rob Roy  Meet an ODROIDian

Please tell us a little about yourself. I live in Florida (aka
the Sunshine State), where I was born and raised. I
have always lived in Florida because it is warm, there’s
so much to do, and the IT industry has been growing
steadily with a lot of promise on the horizon. I went to
college for Computer Networking and, since
graduating, I’ve worked in Information Technologies
for over 15 years. I am married and my wife works in
Marketing. We have a dog. He is a 9 year old
Weimaraner and he has earned many nicknames,
including Sir Barks A Lot.

Figure 1 – A Florida sunset

Figure 2 – The Orlando, Florida skyline

Figure 3 – Visiting the wolf preserve in northern Florida

How did you get started with computers? I originally got
started in computers based on my interest in
electronics when I was young. My father, who is an
engineer, was issued a computer by the company he
worked for and I was fascinated by it but wasn’t
allowed to use it since I was well known for taking
things apart and only sometimes putting them back
together. I saved up my lawn mowing money and
eventually bought a used 8088 computer from a
friend. It was manufactured by a company called
Leading Edge and ran DOS 5.5 from a 40MB hard
drive but I thought it was awesome. I learned BASIC
then Turbo C on that computer and I still enjoy
programming in C variants today. The Internet existed
but I mainly connected to BBSes to get �les and play
games until later on, when I had a better computer
and got interested in Linux.

Figure 4 – Kamots got started by using a Leading Edge
computer

What attracted you to the ODROID platform? I �rst
heard of the ODROID platform and HardKernel when I
read about the ODROID-GO, though I can’t recall

where I read about it originally. I thought it was cool
since it had a lot of capabilities for a good price, and I
ordered one right away. I then got involved with the
ODROID community and started making YouTube
videos about the GO. I’ve enjoyed helping others
discover how to use the emulators and exploring new
projects, like attaching a wireless charging system and
testing new emulators.

Figure 5 – Conway’s Game Of Life on Arduino

Figure 6 – An early 1-wire temperature sensor project

How do you use your ODROIDs? I run several di�erent
emulators on my ODROID-GO and I help out with
development as time allows. Lately, I have been
enjoying learning the Commodore 64 platform using
the new emulator on my GO. I am looking forward to
the future additions to this platform.

Which ODROID is your favorite and why? The ODROID-
GO. It is just portable fun. It has a touch of nostalgia,
which I think is why most everyone gravitates towards
it initially, and I’m enjoying the older games all over
again.

What innovations would you like to see in future
Hardkernel products? I think more products like the
ODROID-GO that make electronics fun for everyone

would be good. An a�ordable single-board computer
that supports M.2 SSDs would be next on my wish list.
I realize that these may be available elsewhere, but I
would love to see HardKernel develop a small version
around the size of the ODROID-C1+.

What hobbies and interests do you have apart from
computers? My wife and I are both SCUBA divers. For
me, it is the closest I’ll likely get to being in outer
space. I follow space science such as the Mars rover
missions, the Voyagers, New Horizons, and the
International Space Station. I try to watch every
launch or major event if my work schedule allows.
When I was young, I used to listen to the NASA audio
feed during Space Shuttle missions. I have been an
Amateur Radio operator for over 20 years and still
�nd it fun to communicate around the world using
just an antenna in the backyard. I mainly use digital
modes such as JT65 and PSK31 on HF (shortwave)
bands. I also enjoy going to the range and putting
holes in far away paper with a bow or �rearm, but I
do not hunt. I like to go geocaching, and travel both
with my wife and to visit friends.

Figure 7 – A geocaching trackable item

Figure 8 – The San Francisco Golden Gate Bridge

Figure 9 – A Jamaican beach

Figure 10 – The Space Shuttle Atlantis in the Kennedy
Space Center

What advice do you have for someone wanting to learn
more about programming? Begin with a device you can
program that interacts with the world. When starting
out, it can be boring to write a program where the
result is only on a screen. However, when someone
writes a simple program that achieves something
externally, like changing the TV volume or monitoring
the weather outside using a remote sensor, I think it
makes things more tangible and the imagination
begins to see other opportunities in the real world.
This can make it more fun for someone just learning
and encourage future projects. Everyone learns
di�erently so try di�erent things to see how you learn
best and stay inspired to do more. I do recommend
eventually learning a C-based language since a lot of
programming languages are based on C. It will help
you understand many di�erent languages once you
understand the basics of C.

