

GO Green with “Envi”: A Qwiic Environmental Combo Sensor for
Your Beloved Game Machine
 July 1, 2019

A venerable sensor for providing ambient temperature and humidity is the integrated
digital environmental sensor BME280 by Bosch Sensortec.

Do It Yourself 6-bay Network Access Storage (NAS): Leveraging the
Power of the ODROID-H2
 July 1, 2019

How to build a 6-Bay NAS server with ODROID-H2.

The G Spot: Your Go-to Destination for all Things Android Gaming
 July 1, 2019

The upcoming summer months could be very exciting for Android gamers. Google
Stadia, E3, and some long-awaited, big-name game releases have all been penciled into
my calendar. One of these major game releases is Elder Scrolls: Blades. I’ve been

singing the praises of this title for the last couple of

Kodi and Advanced Mame on ODROID-XU4 - Part 2
 July 1, 2019

This is a continuation of a guide for setting up Kodi with Mame, which details how to
install the joystick. Ideally, playing with MAME requires a nice joystick. Here are two
examples of joystick I've built myself. It's a good exercise of woodwork, painting,

designing and electronics and a fun

Zoneminder - Part 2: Building the Package From Source on the
ODROID-XU4
 July 1, 2019

ZoneMinder is an integrated set of applications that provide a complete surveillance
solution allowing capture, analysis, recording, and monitoring of any CCTV or security

cameras.

How to Build a Monku Retro Gaming Console - Part 2: Building The
Case
 July 1, 2019

This is a continuation of the Retro Gaming Console article from last month, where we
learned how to build the inside of a retro gaming console.

Yocto on the ODROID-C2: Using Yocto with Kernel 5.0
 July 1, 2019

The Yocto Project (YP) is an open source collaborative project that helps developers
create custom Linux-based systems regardless of the hardware architecture. Yocto is
not an embedded Linux distribution, but it instead creates a custom one for you.

Linux Gaming on ODROID: Gaming on ODROID-N2 – Desktop and
gl4es
 July 1, 2019

The ODROID-N2 is still fairly new, but has already been around for a couple of months.

ODROID-Go Thermal Infrared Camera
 July 1, 2019

This is a simple IR (infrared) thermal camera project for the ODROID-GO handheld
ESP32 system. It allows saving of data to an SD card as well as having a basic Bluetooth
interface to wirelessly get data o� the camera to a computer, tablet or mobile phone.

RetroELEC for the ODROID-XU4: Emulation Station, RetroArch and
Kodi In One Convenient Image
 July 1, 2019

This appliance style "JeOS" Linux distribution is perfect for running emulators, as it
boots lightning fast and uses a minimum of resources

Lutris: Gaming on the ODROID-H2
 July 1, 2019

This article will take a look to see what is needed to set up a basic Linux gaming system
on an ODROID-H2.

GO Green with “Envi”: A Qwiic Environmental Combo Sensor for
Your Beloved Game Machine
 July 1, 2019 By Dave Prochnow ODROID-GO, Tinkering

“Gee, it stinks in here,” you might be thinking. While
this statement is a little vague, it does indicate that
you could be experiencing an air quality issue within
your environment. Most odors, toxic or otherwise, are
generally termed as derivatives of volatile organic
compounds (VOCs). In fact, a key measurement in
determining air quality is the quanti�cation of total
volatile organic compounds or TVOCs.

One of the premier sensors for measuring VOCs is the
ultra low-power CCS811 digital gas sensor by ams AG
in Austria. In addition to providing a VOC
measurement, the CCS811 is also able to output
equivalent CO2 (eCO2) levels. These eCO2 values are
typically a form of VOC that is generated by humans.

Figure 1 - Monitor your indoor environment with an
ODROID-GO.

These air quality levels are given as parts per billion
(PPB) for TVOCs and parts per million (PPM) for eCO2.
As a standalone sensor, the output from the CCS811
is unre�ned and inaccurate. In order to improve the
air quality measurement output, the CCS811 readings

can be improved by compensating them with the
input of the current air temperature and relative
humidity.

A venerable sensor for providing ambient
temperature and humidity is the integrated digital
environmental sensor BME280 by Bosch Sensortec.
Integrating the BME280 output into the calculations
for CCS811 air quality could be a cumbersome task.
Luckily, SparkFun Electronics (SFE) has thoughtfully
combined both the CCS811 and the BME280 sensors
together onto a single breakout board that is able to
reliably monitor environmental air quality.

Figure 2 - The SFE Environmental Combo Breakout.
Image courtesy of SparkFun Electronics.

Dubbed the Qwiic Environmental Combo Breakout,
SparkFun sweetened the deal further by bundling this
air quality monitoring package into their Qwiic I2C
ecosystem. Now by utilizing the Qwiic Adapter project
that we built in the May 2019 issue of ODROID
Magazine, available here,
https://magazine.odroid.com/article/go-and-be-qwiic-
about-it/?ineedthispage=yes we can easily monitor
our indoor air quality with impressive precision via a
simple plug-and-GO system. Ah, the sweet smell of
success!

Figure 3 - A sample output from the Qwiic
Environmental Combo Breakout.

Parts

SparkFun Environmental Combo Breakout –
CSS811/BME280 (Qwiic) – SEN-14348 $35.95 Qwiic
Cable – PRT-14427 $1.50

Step-by-Step

1. Plug the Qwiic Adapter into your ODROID-GO GPIO
connector.

2. Connect the Qwiic cable to the Qwiic adapter and
plug the other end into the Environmental Combo
Breakout Board.

3. Input and upload this simple Arduino sketch to
your ODROID-GO handheld gaming device:

/***

BME280Compensated.ino

Marshall Taylor @ SparkFun Electronics

April 4, 2017

https://github.com/sparkfun/CCS811_Air_Quality_Bre

akout

https://github.com/sparkfun/SparkFun_CCS811_Arduin

o_Library

This example uses a BME280 to gather environmental

data that is then used

to compensate the CCS811.

Hardware Connections (Breakoutboard to Arduino):

3.3V to 3.3V pin

GND to GND pin

SDA to A4

SCL to A5

Resources:

Uses Wire.h for i2c operation

Hardware Connections:

Attach the Qwiic Environmental Combo to the Qwiic

Adapter board mounted on your ODROID-GO

Display on the ODROID-GO @ 320x240

Development environment specifics:

Arduino IDE 1.8.1

This code is released under the [MIT License]

(http://opensource.org/licenses/MIT).

Please review the LICENSE.md file included with

this example. If you have any questions

or concerns with licensing, please contact

techsupport@sparkfun.com.

Distributed as-is; no warranty is given.

**

****************************/

#include

#include

#include

#include

#define CCS811_ADDR 0x5B //Default I2C Address

//#define CCS811_ADDR 0x5A //Alternate I2C Address

//Global sensor objects

CCS811 myCCS811(CCS811_ADDR);

BME280 myBME280;

ILI9341 lcd = ILI9341();

void setup()

{

Serial.begin(9600);

Serial.println();

Serial.println("Apply BME280 data to CCS811 for

compensation.");

Wire.begin();

//This begins the CCS811 sensor and prints error

status of .begin()

CCS811Core::status returnCode = myCCS811.begin();

if (returnCode != CCS811Core::SENSOR_SUCCESS)

Serial.println("Problem with CCS811");

printDriverError(returnCode);

else

Serial.println("CCS811 online");

//Initialize BME280

//For I2C, enable the following and disable the

SPI section

myBME280.settings.commInterface = I2C_MODE;

myBME280.settings.I2CAddress = 0x77;

myBME280.settings.runMode = 3; //Normal mode

myBME280.settings.tStandby = 0;

myBME280.settings.filter = 4;

myBME280.settings.tempOverSample = 5;

myBME280.settings.pressOverSample = 5;

myBME280.settings.humidOverSample = 5;

//Calling .begin() causes the settings to be

loaded

delay(10); //Make sure sensor had enough time to

turn on. BME280 requires 2ms to start up.

byte id = myBME280.begin(); //Returns ID of 0x60

if successful

if (id != 0x60)

Serial.println("Problem with BME280");

else

Serial.println("BME280 online");

// Setup LCD

lcd.begin();

lcd.setRotation(1);

lcd.fillScreen(BLACK);

lcd.setBrightness(255);

lcd.setTextFont(1);

lcd.setTextSize(2);

lcd.setCharCursor(10, 2);

lcd.setTextColor(LIGHTGREY);

lcd.println("ODROID-GO");

lcd.setCharCursor(5, 4);

lcd.println("Environmental Data");

lcd.setTextSize(2);

}

//--

void loop()

{

// Initiate the text cursor position

lcd.setCharCursor(1, 6);

//Check to see if data is available

if (myCCS811.dataAvailable())

//Calling this function updates the global tVOC

and eCO2 variables

myCCS811.readAlgorithmResults();

//printData fetches the values of tVOC and eCO2

printData();

float BMEtempC = myBME280.readTempC();

float BMEhumid = myBME280.readFloatHumidity();

Serial.print("Applying new values (deg C, %): ");

Serial.print(BMEtempC);

Serial.print(",");

Serial.println(BMEhumid);

Serial.println();

//This sends the temperature data to the CCS811

myCCS811.setEnvironmentalData(BMEhumid, BMEtempC);

else if (myCCS811.checkForStatusError())

Serial.println(myCCS811.getErrorRegister());

//Prints whatever CSS811 error flags are detected

delay(2000); //Wait for next reading

}

//--

void printData()

{

lcd.setTextColor(BLUE, BLACK);

Serial.print(" CO2[");

lcd.print ("CO2: [");

Serial.print(myCCS811.getCO2());

lcd.print (myCCS811.getCO2());

Serial.print("]ppm");

lcd.println ("] ppm");

Serial.print(" TVOC[");

lcd.print (" TVOC: [");

Serial.print(myCCS811.getTVOC());

lcd.print (myCCS811.getTVOC());

Serial.print("]ppb");

lcd.println ("] ppb");

lcd.println (" ");

lcd.setTextColor(RED, BLACK);

Serial.print(" temp[");

lcd.print (" Temp: ");

Serial.print(myBME280.readTempC(), 1);

lcd.print (myBME280.readTempC(), 1);

Serial.print("]C");

lcd.println ("C");

Serial.print(" pressure[");

lcd.print (" Press: ");

Serial.print(myBME280.readFloatPressure(), 2);

lcd.print (myBME280.readFloatPressure(), 2);

Serial.print("]Pa");

lcd.println ("Pa");

lcd.println (" ");

lcd.setTextColor(ORANGE, BLACK);

Serial.print(" humidity[");

lcd.print (" Humidity: ");

Serial.print(myBME280.readFloatHumidity(), 0);

lcd.print (myBME280.readFloatHumidity(), 0);

Serial.print("]%");

lcd.println ("%");

Serial.println();

}

//printDriverError decodes the CCS811Core::status

type and prints the

//type of error to the serial terminal.

//

//Save the return value of any function of type

CCS811Core::status, then pass

//to this function to see what the output was.

void printDriverError(CCS811Core::status

errorCode)

{

switch (errorCode)

case CCS811Core::SENSOR_SUCCESS:

Serial.print("SUCCESS");

break;

case CCS811Core::SENSOR_ID_ERROR:

Serial.print("ID_ERROR");

break;

case CCS811Core::SENSOR_I2C_ERROR:

Serial.print("I2C_ERROR");

break;

case CCS811Core::SENSOR_INTERNAL_ERROR:

Serial.print("INTERNAL_ERROR");

break;

case CCS811Core::SENSOR_GENERIC_ERROR:

Serial.print("GENERIC_ERROR");

break;

default:

Serial.print("Unspecified error.");

}

4. Use your newly built air quality sensor to discover
who’s been using the formaldehyde without your
permission.

Figure 4 - Compare the results between two similar
environmental sensor boards. Does something smell
�shy here?

NOTE: In order to obtain valid air quality output from
the Environmental Combo board, you must do a
single “burn-in”cycle of the CSS811 sensor for 48
hours AND you must perform a warm-up wait of 20
minutes before each use.

Do It Yourself 6-bay Network Access Storage (NAS): Leveraging
the Power of the ODROID-H2
 July 1, 2019 By @tobetter Linux, Tutorial

This article will instruct you on how to build a 6-Bay
NAS server with ODROID-H2. A few weeks ago, a small
project to build a 6-Bay NAS server was started with
the ODROID-H2 (Rev.B) when it was released in June.
Many users have asked if ODROID-H2 can run more
than 2 drives using PCI-e to SATA expansion card and
a couple of users have tried.

Case

I have tried to look for a decent case that has enough
space in order to �t 6x 3.5" disk drives and the
ODROID-H2. There are many NAS or HTPC cases that
can �t the mini-ATX board, but the challenge was their
height is either too low or the volume is not enough
to install six HDD drives. The fancy cases with 4-6 hot-
swap bays were too expensive or they only supported
2.5" drives. For enough installation space and a
decent budget, the NAS case from
https://bit.ly/2X82Qtr was chosen.

It has 3 brackets that can hold 2 x 3.5" drives each,
and a standard ATX power can be located under the
drive bays. It also has 4 PCB mounts on the bottom
but their dimensions are for a standard ATX form
factor in which ODROID-H2 will not �t, so a mount
adaptor for ODROID-H2 is required.

Figure 1

https://bit.ly/2X82Qtr

Figure 2 Figure 3

Board mounting

Many of you have already noticed that the form factor
of OROID-H2 is not compatible with any ATX
speci�cations, and this causes some di�culty in
mounting it in a standard PC case or HTPC case. The
case that we purchased is also designed for a mini
ATX board which is still big for ODROID-H2; therefore,
a mounting adaptor board is necessary. In the
beginning, an acrylic panel was considered as a
material for the mounting adaptor board. However, it
is too weak and I have to order a new razor cutting
whenever I change the design. Eventually, I decided to
build it with a 3D printer.

Figure 4

The panel has been attached to ODROD-H2 using the
10mm height PCB support. The height of 10mm is just
enough in order to put ODROID-H2 on the top
surface; otherwise, the memory socket will interfere
with the mount. Since the height of the printed
mounting panel is 3mm, ODROID-H2 is mounted at
13mm higher than other ATX boards and this causes
an issue with the back panel.

Figure 5

Figure 6

As we have planned to run 6 drives with ODROID-H2,
the SATA expansion card supports 4 additional SATA

connectors for the M.2 slot which are apart from the 2
SATA slots from ODROID-H2. Attaching the SATA
cables to the adaptor requires more space
underneath the ODROID-H2, the right-angle type
cable helps to save this space. However, using the
cable still requires approximately 25mm from the
bottom surface of ODROID-H2. Since we already have
13mm from the mounting panel, we had to gain the
remaining 12mm from the case. Fortunately, the
height of PCB mount holes is 12mm, which matches
our requirements and the ODROID-H2 can be safely
placed in the case.

Figure 7

Figure 8

Figure 9

Next, I had to address the problem with the back
panel. Everything is higher than a regular PC board,
since we mounted the ODROID-H2 using the standard
ATX mount holes and made space for SATA cables on
the underside. This means NAS users will have to give
up using an audio connector. The Ethernet
connectors, on the other hand, might be an issue.
After attaching the back panel cover printed with the
mounting panel, it is not quite aligned to the
connectors of ODROID-H2 but is acceptable for our
use.

Figure 10

Figure 11

I have another picture of attaching the Ethernet
cables to ODROID-H2 while it is mounted in the case.
It just barely �ts for plugging in the cable to ODROID-
H2 without any interference from the case. So I
believe that attaching the Ethernet cable to ODROID-
H2 is not a big problem at all, however, it is not not
detachable once it has been attached.

Figure 12

We are planning to keep moving forward even though
we have discovered the problems of the back panel
and the tight Ethernet cable. Our NAS will run 24/7,
therefore, the network cable will be �xed or the cable
connection can be mounted on the other side of the
case.

Power supply

We have purchased a 350W standard ATX power
supply which �ts perfectly inside the case. While
350W might seem like a higher wattage for running 6
HDD and the ODROID-H2, the price of such ATX
power is not very high, so this power supply is
acceptable. Other than the power supply rating, what
we had to consider was if the PSU has enough SATA

connectors. Since most PSUs under 500W has up to 4
SATA power connectors, one extra SATA extension
cable had to be added for the remaining 2 HDD
drives.

Figure 13

Supplying power to ODROID-H2 and 6 HDD is a
challenge, but, more importantly, was the question of
whether or not the system could be controlled via a
single switch. This is because the standard ATX power
is not only turned “on” when the power signal on the
ATX power connector is triggered. Instead, we will
need to monitor another signal which indicates
whether the power state is good or not. Eventually it
was decided to use the signal Power “on” with an
ordinary switch module. This was the simplest way to
control the PSU with the switch on it. A small switch
has been purchased and it �ts well in the extension
card slot. The card slot bracket has to be cut as much
as the length of the switch.

Figure 14

The wire color of Power-on signal on the PSU is green.
This signal must be shorted to the ground in order to
turn on the PSU. Since we have decided to use a

toggle switch the green wire and a black wire have to
be soldered to the switch.

Figure 15

Figure 16

The ODROID-H2 does not have standard PC-type
pinouts for LED indicators or buttons. Therefore, in
order to light the power LED, the wire should be
connected to the voltage out on the expansion
pinout. The DC 3.3V and the ground pins can be
connected as shown below.

Figure 17

Figure 18

HDD installation and wiring

For this project, 6x Western Digital 1TB HDD were
purchased and mounted to the bracket in the case.

Figure 19

The case comes with 3 brackets by default. Two HDDs
can be mounted on each bracket.

Figure 20

Figure 21

Four HDDs with white cables will be connected
through the M.2 SATA expansion board and the other
two with red cables will be routed via onboard SATA
connections. The power cables for the HDD drives will
be connected using the SATA connectors on the PSU.
However, we still need another "Y" cable which
converts the single IDE connector to two SATA cables.

Figure 22

Figure 23

Setup BIOS

With its default setup, SATA adapter on M.2 slot will
not work. To use properly, we have to con�gure BIOS
settings. Enter BIOS by pressing the Delete key just
after the power button is pushed. Then, you should
see the screen shown in Figure 24.

Figure 24

You have to set 2 options:

Chipset - South Cluster Con�guration - Miscellaneous
Con�guration - State After G3 to “S0 State” to make it
turn on automatically when the power plugged.

Chipset - South Cluster Con�guration - PCI Express
Con�guration - PCI Express Clock Gating to “Disabled”
to make the M.2 to SATA adapter work properly.

Move using the arrow keys on the keyboard to them
and set each option.

Figure 25

Figure 26

Installing Ubuntu

To its host operating system, we've decided to install
Ubuntu 19.04. Download the latest OS image from
Ubuntu download page
(https://ubuntu.com/download), and �ash that
image into a USB stick using Etcher. Etcher is a multi-
platform �ashing tool. Plug the USB memory stick to
H2 and power on. Then press F7 to enter choosing
boot media screen. If the screen shows up, select the
inserted USB boot media.

Figure 27

Continue installing Ubuntu per your preferences. Just
be aware of selecting a hard drive when you select a
root media during installation. Keeping the system
up-to-date is highly recommended in any case of
application use, in most cases.

To check whether the hard drives were installed
properly, you can look into the output of dmesg:

$ dmesg | grep scsi

[2.067831] scsi host0: ahci

[2.068684] scsi host1: ahci

[2.080796] scsi host2: ahci

[2.080964] scsi host3: ahci

[2.084816] scsi host4: ahci

[2.084976] scsi host5: ahci

[2.548364] scsi 0:0:0:0: Direct-Access ATA

WDC WD10EFRX-68F 0A82 PQ: 0 ANSI: 5

[2.549029] sd 0:0:0:0: Attached scsi generic

sg0 type 0

[2.549321] scsi 1:0:0:0: Direct-Access ATA

WDC WD10EFRX-68F 0A82 PQ: 0 ANSI: 5

[2.549627] sd 1:0:0:0: Attached scsi generic

sg1 type 0

[2.563013] scsi 2:0:0:0: Direct-Access ATA

WDC WD10EFRX-68F 0A82 PQ: 0 ANSI: 5

[2.563292] sd 2:0:0:0: Attached scsi generic

sg2 type 0

https://ubuntu.com/download

[2.563497] scsi 3:0:0:0: Direct-Access ATA

WDC WD10EFRX-68F 0A82 PQ: 0 ANSI: 5

[2.563693] sd 3:0:0:0: Attached scsi generic

sg3 type 0

[2.563875] scsi 4:0:0:0: Direct-Access ATA

WDC WD10EFRX-68F 0A82 PQ: 0 ANSI: 5

[2.564070] sd 4:0:0:0: Attached scsi generic

sg4 type 0

[2.564268] scsi 5:0:0:0: Direct-Access ATA

WDC WD10EFRX-68F 0A82 PQ: 0 ANSI: 5

[2.564444] sd 5:0:0:0: Attached scsi generic

sg5 type 0

This shows that those 6 drives are recognized
normally. If yours aren’t, you should check the
hardware connection or BIOS settings.

Partition Hard Drives

Check the installed hard drives using the following
commands.

$ sudo fdisk -l | grep sd

Disk /dev/sda: 931.5 GiB, 1000204886016 bytes,

1953525168 sectors

Disk /dev/sdb: 931.5 GiB, 1000204886016 bytes,

1953525168 sectors

Disk /dev/sdc: 931.5 GiB, 1000204886016 bytes,

1953525168 sectors

Disk /dev/sdd: 931.5 GiB, 1000204886016 bytes,

1953525168 sectors

Disk /dev/sde: 931.5 GiB, 1000204886016 bytes,

1953525168 sectors

Disk /dev/sdf: 931.5 GiB, 1000204886016 bytes,

1953525168 sectors

Next, create a partition using the parted tool. You can
use fdisk to partition them but GPT partition table
should be created in order to use more than 2TB hard
drive. Partition the disks respectively referring to the
following procedures:

$ sudo parted /dev/sda

GNU Parted 3.2

Using /dev/sda

Welcome to GNU Parted! Type 'help' to view a list

of commands.

(parted) mklabel gpt

(parted) print free

Model: ATA WDC WD10EFRX-68F (scsi)

Disk /dev/sda: 1000GB

Sector size (logical/physical): 512B/4096B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name

Flags

 17.4kB 1000GB 1000GB Free Space

(parted) mkpart primary 1M 1000GB

(parted) p

Model: ATA WDC WD10EFRX-68F (scsi)

Disk /dev/sda: 1000GB

Sector size (logical/physical): 512B/4096B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name

Flags

 1 1049kB 1000GB 1000GB

primary

(parted) q

Information: You may need to update /etc/fstab.

Check the changes applied.

$ lsblk | grep sd

sda 8:0 0 931.5G 0 disk

└─sda1 8:1 0 931.5G 0 part

sdb 8:16 0 931.5G 0 disk

└─sdb1 8:17 0 931.5G 0 part

sdc 8:32 1 931.5G 0 disk

└─sdc1 8:33 1 931.5G 0 part

sdd 8:48 1 931.5G 0 disk

└─sdd1 8:49 1 931.5G 0 part

sde 8:64 1 931.5G 0 disk

└─sde1 8:65 1 931.5G 0 part

sdf 8:80 1 931.5G 0 disk

└─sdf1 8:81 1 931.5G 0 part

We can see each all hard drive has one partition. After
partitioning all of the drives, now it's time to set RAID
6 up on our NAS.

Con�gure RAID 6

Here are two main reasons for using RAID level 6:

It is more robust than RAID 5, because it uses one
more disk for parity.

There will be no data loss even after 2 disk fails. We
can rebuild it after replacing the failed disk.

However, it also has some overhead: double parity
can verify its stability, but it also comes with poor
writing performance. A minimum of 4 disks are

required to build with RAID 6. Since we have 6 hard
drives which have 1TB capacity each, we can build
using RAID 6 and there will be 4TB capacity that we
can use.

To setup RAID without a physical RAID controller on
Linux system, we have to use mdadm tool. It is
provided by package manager on each Linux distros:

$ sudo apt install mdadm

We already know that those 6 drives are allocated as
/dev/sda to /dev/sdf. Create an array using the
following command:

$ sudo mdadm --create /dev/md0 --level=6 --raid-

devices=6 /dev/sda1 /dev/sdb1 /dev/sdc1 /dev/sdd1

/dev/sde1 /dev/sdf1

mdadm: Defaulting to version 1.2 metadata

mdadm: array /dev/md0 started.

The /dev/md0 device �le will be created. You should
use that device like a single hard drive partition, so if
you want to mount that array to a directory, you can
just mount with that device �le. Format that partition
and mount to the /media/storage:

$ sudo mkfs.ext4 /dev/md0

mke2fs 1.44.6 (5-Mar-2019)

Creating filesystem with 976628736 4k blocks and

244162560 inodes

Filesystem UUID: 100a470d-96f1-47d2-8cf0-

a211c010e8b9

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200,

884736, 1605632, 2654208,

 4096000, 7962624, 11239424, 20480000, 23887872,

71663616, 78675968,

 102400000, 214990848, 512000000, 550731776,

644972544

Allocating group tables: done

Writing inode tables: done

Creating journal (262144 blocks): done

Writing superblocks and filesystem accounting

information: done

$ sudo mkdir /media/storage

$ sudo mount /dev/md0 /media/storage/

Check if it mounted properly.

$ cat /proc/mounts | grep md0

/dev/md0 /media/storage ext4

rw,relatime,stripe=512 0 0

You also can see the RAID con�gurations:

$ sudo mdadm --detail /dev/md0

/dev/md0:

 Version : 1.2

 Creation Time : Mon Jun 17 18:08:26 2019

 Raid Level : raid6

 Array Size : 3906514944 (3725.54 GiB

4000.27 GB)

 Used Dev Size : 976628736 (931.39 GiB 1000.07

GB)

 Raid Devices : 6

 Total Devices : 6

 Persistence : Superblock is persistent

 Intent Bitmap : Internal

 Update Time : Mon Jun 17 18:27:08 2019

 State : active, resyncing

 Active Devices : 6

 Working Devices : 6

 Failed Devices : 0

 Spare Devices : 0

 Layout : left-symmetric

 Chunk Size : 512K

Consistency Policy : bitmap

 Resync Status : 8% complete

 Name : ODROID-H2:0 (local to host

ODROID-H2)

 UUID :

d4759dbb:65fd2b07:d5f4f9c3:0fba55cc

 Events : 253

 Number Major Minor RaidDevice State

 0 8 1 0 active

sync /dev/sda1

 1 8 17 1 active

sync /dev/sdb1

 2 8 33 2 active

sync /dev/sdc1

 3 8 49 3 active

sync /dev/sdd1

 4 8 65 4 active

sync /dev/sde1

 5 8 81 5 active

sync /dev/sdf1

Since this RAID array was just created, a resync
process to synchronize with the other devices needs
to be performed. You can see the status of the resync
process with the following command:

$ cat /proc/mdstat

Personalities : [linear] [multipath] [raid0]

[raid1] [raid6] [raid5] [raid4] [raid10]

md0 : active raid6 sdf1[5] sde1[4] sdd1[3] sdc1[2]

sdb1[1] sda1[0]

 3906514944 blocks super 1.2 level 6, 512k

chunk, algorithm 2 [6/6] [UUUUUU]

 [=>...................] resync = 9.6%

(93909272/976628736) finish=120.2min

speed=122360K/sec

 bitmap: 8/8 pages [32KB], 65536KB chunk

unused devices:

Once the rsync process completes, you can see a
message via dmesg:

$ dmesg | grep resync

[199.311304] md: resync of RAID array md0

[10093.988694] md: md0: resync done.

You also would set your system environment by
adding an entry to /etc/fstab and con�guring the
SAMBA or SFTP server to share your data by using
that RAID-ed hard drives. There are many
management guides for further use of RAID built
system including adding spare drives or dealing with
failed devices, but this guide will not go into those
details.

Benchmarks

I ran iozone3 to evaluate its performance of the H2
with RAID level 6 on 6 hard drives, after making sure
that the resync process had completed:

$ sudo iozone -e -I -a -s 100M -r 4k -r 16384k -i

0 -i 1 -i 2

 Iozone: Performance Test of File I/O

 Version $Revision: 3.429 $

 Compiled for 64 bit mode.

 Build: linux-AMD64

 Contributors:William Norcott, Don Capps, Isom

Crawford, Kirby Collins

 Al Slater, Scott Rhine, Mike

Wisner, Ken Goss

 Steve Landherr, Brad Smith, Mark

Kelly, Dr. Alain CYR,

 Randy Dunlap, Mark Montague, Dan

Million, Gavin Brebner,

 Jean-Marc Zucconi, Jeff Blomberg,

Benny Halevy, Dave Boone,

 Erik Habbinga, Kris Strecker,

Walter Wong, Joshua Root,

 Fabrice Bacchella, Zhenghua Xue,

Qin Li, Darren Sawyer,

 Vangel Bojaxhi, Ben England,

Vikentsi Lapa.

 Run began: Tue Jun 18 10:03:49 2019

 Include fsync in write timing

 O_DIRECT feature enabled

 Auto Mode

 File size set to 102400 kB

 Record Size 4 kB

 Record Size 16384 kB

 Command line used: iozone -e -I -a -s 100M -r 4k

-r 16384k -i 0 -i 1 -i 2

 Output is in kBytes/sec

 Time Resolution = 0.000001 seconds.

 Processor cache size set to 1024 kBytes.

 Processor cache line size set to 32 bytes.

 File stride size set to 17 * record size.

random random bkwd record stride

 kB reclen write rewrite read

reread read write read rewrite

read fwrite frewrite fread freread

 102400 4 9241 14364

27027 29648 15326 4404

 102400 16384 208414 209245

521260 669540 731096 177565

iozone test complete.

Since the 6 hard drives are linked to each other, its
performance is far better than from the results with
the only 1 hard drive.

Figure 28 - Benchmarks

RAID 6 uses double parity, but 6 hard drives perform
like a kind of multiprocessing in CPU literally, so the
overall speed can be greatly increased. If using RAID
level 5, the performance would be a little bit better
than this since RAID 5 uses single parity. Therefore,

there's no reason not to use RAID 6 when you have
more than 4 hard drives, especially, since the H2 is a
powerful host hardware for NAS use at a reasonable
price, with 2 Gigabit LAN ports as an added bonus for
connectivity. We will address Software Installation in
an upcoming article.

References

https://forum.odroid.com/viewtopic.php?
f=172&t=35309https://www.tecmint.com/create-
raid-6-in-linux/
https://askubuntu.com/questions/350266/how-can-
i-create-a-raid-array-with-2tb-disks

https://forum.odroid.com/viewtopic.php?f=172&t=35309
https://www.tecmint.com/create-raid-6-in-linux/
https://askubuntu.com/questions/350266/how-can-i-create-a-raid-array-with-2tb-disks

The G Spot: Your Go-to Destination for all Things Android
Gaming
 July 1, 2019 By Dave Prochnow Gaming

The upcoming summer months could be very exciting
for Android gamers. Google Stadia, E3, and some
long-awaited, big-name game releases have all been
penciled into my calendar. One of these major game
releases is Elder Scrolls: Blades. I’ve been singing the
praises of this title for the last couple of months, so I
felt that it was high time to do a quick play-test of the
early access version.

Figure 1 - You will need a constant Internet connection
for playing the early access version

Right out of the chute, this early access version of the
game requires that you have an Internet connection.
Even though the game is a fairly reasonable 120Mb
download, the initial startup of the game will require
another 880Mb download along with an additional

380Mb update! Furthermore, each time you start a
gaming session, there is a lengthy delay while the
version numbers of the updates are veri�ed with the
Bethesda servers.

Does all of this online access make Elder Scrolls:
Blades a worthwhile gaming experience? That answer
is a mixed bag. Granted, many of the visual e�ects are
stunningly rendered and richly animated, but the
actual game play leaves a lot to be desired.

Relying on a point-touch-move interactive
exploration/navigation format, the similar combat
actions in Elder Scrolls: Blades featuring a point-
touch-stab attack mode seem amateurish and poorly
developed. Coupled with the basic, wooden dialog
voiced by various antagonists you encounter
throughout the game, this early access version seem
like a half-baked e�ort that isn’t even close to being
ready for prime time.

Figure 2 - Not much of a threat here—eight pokes from
my �nger/sword will quickly dispatch ye

Ailment

In this free action title from BeardyBird Games, you
are an astronaut who wakes up on a spaceship full of
problems and inhabited by enemies. There is a whole

rash of questions that you must answer. Why are they
trying to kill you? Who are they? And, most
importantly, where are you? Ailment is part puzzle-
solving game and part epic shoot ‘em up combat
game. The result is a game that includes hidden
references to classic science �ction alongside the �nal
goal of �guring out what happened on this spaceship.

https://www.youtube.com/watch?v=T2inRVXYRNU

Figure 3 - You’ll be talking to yourself a LOT in Ailment.
Image courtesy of BeardyBird Games.

Despotism 3K

Featuring a unique take on the Sim IV game concept,
this release from Konfa Games is much more mature
and much more fun(ny). Reduced to a new $3.49
purchase price, Despotism 3K o�ers an Arti�cial
Intelligence (AI) master being who controls a throng of
subservient humans to do its bidding. And many of
these chores can be fatal. But pity not the humans or
you’ll lose this game.

https://www.youtube.com/watch?v=OT3QJZ_mrJo

Cool Android Game Summer Picks

Asphalt 9: Legends – FREE Crashlands – $4.99 Riptide
GTP Series – $2.99 Shadowgun Legends – FREE Elder
Scrolls: Blades – FREE. PLEASE try before you buy this
one.

Kodi and Advanced Mame on ODROID-XU4 - Part 2
 July 1, 2019 By David Bellot Gaming

This is a continuation of a guide for setting up Kodi
with Mame, which details how to install the joystick.
Ideally, playing with MAME requires a nice joystick.
Here are two examples of joystick I've built myself. It's
a good exercise of woodwork, painting, designing and
electronics and a fun game for the family. I've made
them with planks I collected from a construction site
nearby. Good for the environment to recycle things
too.

Figure 1 - Custom made Joystick for Kodi with Mame

Figure 2 - Custom made Joystick for Kodi with Mame

1. Install the software to support and calibrate the
joystick. Arcade joysticks are easy to build or can be
bought on Internet. They work very well and ideal for
playing with MAME's arcade games.

$ sudo apt install joystick jstest-gtk

Calibrate the joystick

Since most Mame games will require a simple joystick
with buttons, calibration will be very simple. You can
use jstest-gtk, but because we already installed Kodi,

we will do the calibration from the command line
only.

With a click joystick, the only calibration is to associate
buttons (inside the joystick for the directions and
�re/select buttons), with their respective direction or
function. The calibration will be available system-wide
and therefore will be used by mame.

If you can plug your joystick into your Linux machine, I
recommend to use a small program called jstest-gtk.
It's a simple GUI, and you can check the proper
direction of your joystick. In my case, I use a
DragonRise compatible joystick (the one on the
picture), with 4 connectors for up, down, left and
right. But there are a few problems which we will �x
with the calibration. First of all, the left-right and up-
down are inversed and then the up-down axis is
upside down. So to make it short: up is right, down is
left, right is down and left is up!!! I can see that on the
jstest-gtk interface.

Another option (since Kodi 17) is to setup your joystick
directly from Kodi. A tutorial is available at
https://kodi.wiki/view/HOW-TO:Con�gure_controllers.
As there are many models of joystick, I won't cover all
the possible con�gurations, but please contribute and
I'll add your solution to this guide.

If you want to play with the joystick con�guration and
assign various command to each button or change
the directions, you need to provide a con�guration
�le. Let's call it myjoyremap.cfg. In my case, I use the
following �le, but yours might di�er a lot depending
on what you want to achieve and your joystick's
model:

< ?xml version="1.0"? >

< mameconfig version="10" >

< system name="default" >

< input >

< port type="P1_JOYSTICK_UP" > < newseq

type="standard" > JOYCODE_1_XAXIS_RIGHT_SWITCH <

/newseq > < /port >

< port type="P1_JOYSTICK_DOWN" > < newseq

type="standard" > JOYCODE_1_XAXIS_LEFT_SWITCH <

/newseq > < /port >

< port type="P1_JOYSTICK_LEFT" > < newseq

type="standard" > JOYCODE_1_YAXIS_UP_SWITCH <

/newseq > < /port >

< port type="P1_JOYSTICK_RIGHT" > < newseq

type="standard" > JOYCODE_1_YAXIS_DOWN_SWITCH <

/newseq > < /port >

< port type="P1_BUTTON1" > < newseq

type="standard" > JOYCODE_1_BUTTON1 < /newseq > <

/port >

< port type="P1_BUTTON2" > < newseq

type="standard" > JOYCODE_1_BUTTON3 < /newseq > <

/port >

< port type="P1_BUTTON3" > < newseq

type="standard" > JOYCODE_1_BUTTON5 < /newseq > <

/port >

< port type="P1_BUTTON4" > < newseq

type="standard" > JOYCODE_1_BUTTON7 < /newseq > <

/port >

< port type="P1_BUTTON5" > < newseq

type="standard" > JOYCODE_1_BUTTON2 < /newseq > <

/port >

< port type="P1_BUTTON6" > < newseq

type="standard" > JOYCODE_1_BUTTON4 < /newseq > <

/port >

< port type="P1_BUTTON7" > < newseq

type="standard" > JOYCODE_1_BUTTON6 < /newseq > <

/port >

< port type="P1_BUTTON8" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P1_BUTTON9" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P1_BUTTON10" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P1_BUTTON11" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P1_BUTTON12" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P1_START" > < newseq type="standard"

> JOYCODE_1_BUTTON9 < /newseq > < /port >

< port type="P1_SELECT" > < newseq type="standard"

> JOYCODE_1_BUTTON10 < /newseq > < /port >

< port type="COIN1" > < newseq type="standard" >

JOYCODE_1_BUTTON8 < /newseq > < /port >

< port type="START1" > < newseq type="standard" >

KEYCODE_1 OR JOYCODE_1_BUTTON9 < /newseq > < /port

>

< port type="P1_PEDAL" > < newseq type="standard"

> NONE < /newseq > < newseq type="increment" >

NONE < /newseq >

< /port > < port type="P1_PEDAL2" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < /port >

< port type="P1_PEDAL3" > < newseq

type="increment" > NONE < /newseq > < /port >

< port type="P1_PADDLE" > < newseq type="standard"

> NONE < /newseq > < newseq type="increment" >

NONE < /newseq > < newseq type="decrement" > NONE

< /newseq > < /port >

< port type="P1_PADDLE_V" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_POSITIONAL" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_POSITIONAL_V" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_DIAL" > < newseq type="standard" >

NONE < /newseq > < newseq type="increment" > NONE

< /newseq > < newseq type="decrement" > NONE <

/newseq > < /port >

< port type="P1_DIAL_V" > < newseq type="standard"

> NONE < /newseq > < newseq type="increment" >

NONE < /newseq > < newseq type="decrement" > NONE

< /newseq > < /port >

< port type="P1_TRACKBALL_X" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_TRACKBALL_Y" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_AD_STICK_X" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_AD_STICK_Y" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_AD_STICK_Z" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_LIGHTGUN_X" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P1_LIGHTGUN_Y" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_JOYSTICK_UP" > < newseq

type="standard" > JOYCODE_2_XAXIS_RIGHT_SWITCH <

/newseq > < /port >

< port type="P2_JOYSTICK_DOWN" > < newseq

type="standard" > JOYCODE_2_XAXIS_LEFT_SWITCH <

/newseq > < /port >

< port type="P2_JOYSTICK_LEFT" > < newseq

type="standard" > JOYCODE_2_YAXIS_UP_SWITCH <

/newseq > < /port >

< port type="P2_JOYSTICK_RIGHT" > < newseq

type="standard" > JOYCODE_2_YAXIS_DOWN_SWITCH <

/newseq > < /port >

< port type="P2_BUTTON1" > < newseq

type="standard" > JOYCODE_2_BUTTON1 < /newseq > <

/port >

< port type="P2_BUTTON2" > < newseq

type="standard" > JOYCODE_2_BUTTON3 < /newseq > <

/port >

< port type="P2_BUTTON3" > < newseq

type="standard" > JOYCODE_2_BUTTON5 < /newseq > <

/port >

< port type="P2_BUTTON4" > < newseq

type="standard" > JOYCODE_2_BUTTON7 < /newseq > <

/port >

< port type="P2_BUTTON5" > < newseq

type="standard" > JOYCODE_2_BUTTON2 < /newseq > <

/port >

< port type="P2_BUTTON6" > < newseq

type="standard" > JOYCODE_2_BUTTON4 < /newseq > <

/port >

< port type="P2_BUTTON7" > < newseq

type="standard" > JOYCODE_2_BUTTON6 < /newseq > <

/port >

< port type="P2_BUTTON8" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P2_BUTTON9" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P2_BUTTON10" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P2_BUTTON11" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P2_BUTTON12" > < newseq

type="standard" > NONE < /newseq > < /port >

< port type="P2_START" > < newseq type="standard"

> JOYCODE_2_BUTTON9 < /newseq > < /port >

< port type="P2_SELECT" > < newseq type="standard"

> JOYCODE_2_BUTTON10 < /newseq > < /port >

< port type="COIN2" > < newseq type="standard" >

JOYCODE_2_BUTTON8 < /newseq > < /port >

< port type="START2" > < newseq type="standard" >

KEYCODE_2 OR JOYCODE_2_BUTTON9 < /newseq > < /port

>

< port type="P2_PEDAL" > < newseq type="standard"

> NONE < /newseq > < newseq type="increment" >

NONE < /newseq >

< /port > < port type="P2_PEDAL2" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < /port >

< port type="P2_PEDAL3" > < newseq

type="increment" > NONE < /newseq > < /port >

< port type="P2_PADDLE" > < newseq type="standard"

> NONE < /newseq > < newseq type="increment" >

NONE < /newseq > < newseq type="decrement" > NONE

< /newseq > < /port >

< port type="P2_PADDLE_V" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_POSITIONAL" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_POSITIONAL_V" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_DIAL" > < newseq type="standard" >

NONE < /newseq > < newseq type="increment" > NONE

< /newseq > < newseq type="decrement" > NONE <

/newseq > < /port >

< port type="P2_DIAL_V" > < newseq type="standard"

> NONE < /newseq > < newseq type="increment" >

NONE < /newseq > < newseq type="decrement" > NONE

< /newseq > < /port >

< port type="P2_TRACKBALL_X" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_TRACKBALL_Y" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_AD_STICK_X" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_AD_STICK_Y" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_AD_STICK_Z" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_LIGHTGUN_X" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< port type="P2_LIGHTGUN_Y" > < newseq

type="standard" > NONE < /newseq > < newseq

type="increment" > NONE < /newseq > < newseq

type="decrement" > NONE < /newseq > < /port >

< /input >

< /system >

< /mameconfig >

After saving the �le, copy it to /media/usb/AML-
assets/ctrlr/. Then, you can edit this �le to adjust it to
your own joystick. My joystick (which I built myself,
hence the problem mentioned above) has a 90
degrees miscon�guration. In the XML �le, you have
two parts: one for the Player 1 joystick and another
part for the Player 2 joystick. Each line with
type="P1_JOYSTICK_UP" is the direction as understood
by Mame. Then, the real con�guration comes after as
JOYCODE_1_XAXIS_RIGHT_SWITCH. Therefore, this line
means that when my joystick sends a code for RIGHT,
mame will interpret it as UP. Below this, I con�gured
the buttons 1 to 8 and the START and SELECT buttons.
Then I do the same for the Player's 2 joystick.

Finally, you can add it to the mame.ini con�guration
�le by using the following command:

$ echo "ctrlr myjoyremap" | sudo tee -a

/etc/mame/mame.ini

Remove unused software

This section is not mandatory, but you can �nd it
useful to make your ODROID-XU4 lighter and more
responsive. The XU4 has 2GB of memory, which is
currently considered good for a Single Board
Computer. Most of them have 0.5 to 1GB, but I see
some 2 to 4 GB �nally coming onto the market. So
memory is a precious resource as well as CPU cycles.
You don't want any slowdown of your machine while
watching a movie or playing a game.

I selected a few services which I think are not
necessary for a Kodi/Mame installation. Here is the
way to stop and disable them. However, we will not
uninstall the software, so that you can enable them
again, should your needs change in the future.

1. CUPS is a print server, and since you don't really
need to print from Kodi or Mame, it's safe to remove
the print server (named CUPS):

$ sudo systemctl stop cups

$ sudo systemctl stop cups-browsed

$ sudo systemctl disable cups

$ sudo systemctl disable cups-browsed

To re-enable it:

$ sudo systemctl enable cups

$ sudo systemctl start cups

2. UPower controls the power source, and is useful
with a smartphone, laptop or embedded system.
However, in the case of a Kodi/Mame entertainment
system in your living room, the only power source is
the socket wall and your ODROID-XU4 is supposed to
be connected all the time. So you can safely remove
this one too:

$ sudo systemctl stop upower

$ sudo systemctl disable upower

3. Whoopsie is the error reporting daemon for
Ubuntu, mainly used by desktop environment when
something crashes. As we're only using Kodi, it's not
necessary here:

$ sudo systemctl stop whoopsie

$ sudo systemctl disable whoopsie

4. ModemManager is a daemon which controls
mobile broadband (2G/3G/4G) devices and
connections. The ODROID-XU4 is connected to an
ethernet (or a wi� if you have one) and does not need
a _modem_ connection.

$ sudo systemctl stop ModemManager

$ sudo systemctl disable ModemManager

5. unattended-upgrades is a daemon to automatically
update the system. I like when a computer works for
me but in this speci�c case, we will avoid doing any
automatic update. The reason is we want a stable

entertainment system for all the family, which is
available at any time. We don't want to have to do
maintenance, just before launching the family movie,
because an update didn't work:

$ sudo systemctl stop unattended-upgrades

$ sudo systemctl disable unattended-upgrades

If you want to upgrade your ODROID-XU4, you can
still do it manually by running �rst an update of the
packages' database:

$ sudo apt update

$ sudo apt upgrade

Personally, I'm a big fan of a software called Synaptic,
which is a GUI for apt-based systems like Ubutun and
Debian. I recommend it:

$ sudo apt install synaptic

Set the clock

You can synchronize the clock to a time server on the
net and always have your ODROID set to the most
accurate time. Moreover, you want to set the clock to
your timezone.

First, we install a Network Time Protocol (NTP) client
which will connect to time server to get an accurate
time:

$ sudo apt install chrony

Then, we search for the time zone. It will be
something like Europe/Zurich or Paci�c/Auckland. To
�nd yours, use the following command:

$ timedatectl list-timezones

Search and note your own time zone. Let's say you
live near the North Pole in Longyearbyen, you will �nd
the time zone in the list given above as
Arctic/Longyearbyen. Then, tune your ODROID-XU4:

$ sudo timedatectl set-timezone

Arctic/Longyearbyen

For comments, questions, and suggestions, please
visit the original ODROID Forum thread at,
https://forum.odroid.com/viewtopic.php?
f=52&t=34760, or the GitHub repository at
https://github.com/yimyom/odroid-xu4-setup.

https://github.com/yimyom/odroid-xu4-setup.

Zoneminder - Part 2: Building the Package From Source on the
ODROID-XU4
 July 1, 2019 By Michele Matacchione Linux, Tutorial

ZoneMinder is an integrated set of applications that
provide a complete surveillance solution allowing
capture, analysis, recording, and monitoring of any
CCTV or security cameras.

Main features

Monitor from anywhere--Zoneminder has a full-
featured web-based interface; you can access
ZoneMinder from any internet-accessible device.

Use any camera--ZoneMinder allows you to use any
analog or IP-enabled camera.

Control your data--ZoneMinder is fully on-premises; it
allows you to own your data and control where it goes.

Run small or super-big systems--suitable for home and
small business use, as well as multi-server enterprise
deployments. It is compatible with many platforms,
including ARM technology (ODROID-XU4 is built on an
ARM platform).

Keep track of what matters--ZoneMinder allows you to
browse information intuitively. Drill down to what you
want to see in a matter of seconds.

Actively maintained and free of charge--ZoneMinder is
actively maintained by a team committed to open
source

.

Recently, I moved the ZoneMinder application from
my old Radxa Rock Pro (an ARM board) to the more
powerful ODROID-XU4. There is a harder way--
building the package from source--to obtain a working
setup: ODROID-XU4 - Ubuntu 16.04.3 LTS –
Zoneminder 1.30.4.

Figure 1 – ZoneMinder console, con�gured with seven
cameras

Figure 2 – ZoneMinder, watching camera #2

Installation

Let’s install Zoneminder on our ODROID-XU4 board.
First, install Ubuntu 16.04.3 LTS image (upstream
Release 4.14.y) on your SD card. This distro is
provided by Hardkernel at the address:
https://wiki.odroid.com/odroid-
xu4/os_images/linux/ubuntu_4.14/20171213 Then
upgrade the system:

$ sudo apt update

$ sudo apt upgrade

$ sudo apt dist-upgrade

$ sudo apt install linux-image-xu3

$ sudo apt autoremove

$ sudo reboot

Now install LAMP (i.e.: apache, mysql, php) on the
board:

$ sudo apt install apache2

$ sudo apt install mysql-server

$ sudo apt install php libapache2-mod-php php-

mysql

Now install Zoneminder 1.30.4 (**):

$ sudo -i

Tweak MySQL con�guration (not needed for
ZoneMinder 1.32 or greater):

$ rm /etc/mysql/my.cnf (this removes the current

symbolic link)

$ cp /etc/mysql/mysql.conf.d/mysqld.cnf

/etc/mysql/my.cnf

$ nano /etc/mysql/my.cnf

In the [mysqld] section add the following:

$ sql_mode = NO_ENGINE_SUBSTITUTION

Then restart MySQL:

$ systemctl restart mysql

Now build ZoneMinder 1.30.4: �rst add repository
and download tools,

$ add-apt-repository ppa:iconnor/zoneminder-master

$ apt-get update

$ apt-get install php-apcu-bc

$ sudo apt-get install gdebi-core

$ sudo wget

https://raw.githubusercontent.com/ZoneMinder/ZoneM

inder/master/utils/do_debian_package.sh

$ sudo chmod a+x do_debian_package.sh

$ sudo apt-get install devscripts

$ sudo apt install git

then the real “very long” build process:

$ sudo ./do_debian_package.sh --snapshot=NOW --

branch=1.30.4 --type=local

Now install ZoneMinder 1.30.4 (use the ls command
to discover yyyymmddhhmmss to be used in
zoneminder_1.30.4~yyyymmddhhmmss-
xenial_armhf.deb):

$ sudo gdebi zoneminder_1.30.4~yyyymmddhhmmss-

xenial_armhf.deb

Create ZoneMinder database:

$ mysql -uroot -p <

/usr/share/zoneminder/db/ZoneMinder_create.sql

$ mysql -uroot -p -e "grant lock

tables,alter,drop,select,insert,update,delete,crea

te,index,alter routine,create routine,

trigger,execute on zm.* to 'zmuser'@localhost

identified by 'zmpass';"

Add permissions:

$ chmod 740 /etc/zm/zm.conf

$ chown root:www-data /etc/zm/zm.conf

https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.14/20171213

$ chown -R www-data:www-data

/usr/share/zoneminder/

Enable modules and ZoneMinder con�guration:

$ a2enmod cgi

$ a2enmod rewrite

$ a2enconf zoneminder

$ a2enmod expires

$ a2enmod headers

Enable ZoneMinder to system startup:

$ systemctl enable zoneminder

$ systemctl start zoneminder

Con�gure php.ini with the correct time zone:

$ nano /etc/php/7.0/apache2/php.ini

Insert your time zone;

$ [Date]

$; Defines the default timezone used by the date

functions

$; http://php.net/date.timezone

$ date.timezone = America/New_York

Restart Apache:

$ systemctl reload apache2

Now you can �nd the ZoneMinder web page at
http://IP_of_the_board/zm and add your cameras. All
types of cameras will work for this: �mpeg and mjpeg
cameras, connected via Wi-Fi, Ethernet cable, or USB.

How to Build a Monku Retro Gaming Console - Part 2: Building
The Case
 July 1, 2019 By Brian Ree Gaming

This is a continuation of the Retro Gaming Console
article from last month, where we learned how to
build the inside of a retro gaming console. This
installment will show you how to build a case for the
project using an ODROID-C1+ / C2.

Now that we have our custom control buttons made
and the board set up with a power button connection,
let's work on the case. First, we need a place for
mounting the buttons. There are two places on the
case that can easily accommodate the buttons
without interfering with the heat sink or any other
internal components. One place is on the right-hand
side of the back panel, just above one of the those
jumper connection points, pwr. The other is a little to
the left side, just past the center of the case. You can
use the same positions for both the C1+ and the C2,
although things are a bit tighter in the C1+. Below are
two prototype devices with the buttons mounted. The

holes weren't perfectly lined up because these were
experimental builds.

Figure 1 - Two prototype devices with buttons mounted

(Figure 1 - Two prototype devices with buttons
mounted)

A small sticky note does wonders for this part.
Depending on the diameter of the buttons, you can
use a ruler to position the holes on the sticky note,
then compare it to the actual device. For this you may
want to set the device inside the case and place the
top on without closing the case. You don't want to
have to suddenly stop and wrestle the case back
open. Move the note around, adjust your lines, and
see if you can locate a good spot.

NOTE: Keep in mind that the heatsink will block the
switch if it's not high enough inside the case. NOTE: If
you are working with a C1+ unit, the power jumpers
are right next to the button mount point. Make sure
there is room for them!

Figure 2 - Use a sticky note to position the buttons in
your case

(Figure 2 - Use a sticky note to position the buttons in
your case)

It’s drill time! Any old drill will do. I have a cheap $20
USD drill with an a�ordable drill bit set. Check the
dimensions of your buttons: they should be around
6mm (0.25 inches) in diameter. Make sure your target
drill bit isn't too big. After drilling, you want the holes
to be just a little bit too small. I like working my way
up from the smaller bits to the larger one, rather than
going straight to the larger one. I �nd there are less
errors this way, as each bit only removes a little
plastic. You can even walk the hole in a slightly
di�erent direction by shifting a little with each new
bit. This is great for last minute adjustments in case
you make a slight location mistake.

Figure 3 - A cheap drill and bit set is all you need for this
step

Keep your �nger on the sticky note and out of the way
of the drill. Do not let the note slip. Use the smallest
bit to drill through the paper and into the plastic just
deep enough to leave a visible mark. Remove the
sticky note and while holding the case, drill through
each hole with the small bit. Work your way up from
there.

Figure 4 - Drill through the paper into the plastic, just
deep enough to leave a bit of a visible mark

Below, we can see the larger holes made with each of
the successive drill bits. At some point in this process
you'll encounter a drill bit that really grabs the plastic
and jerks the case. Stop at this point. Place the case
on a �at surface near the edge of your workspace so
you can access it with the drill. Gently lay your palm
�at on top of the case with some downward pressure.
This will keep the case from being twisted and
snapped.

Figures 5 and 6 - Each run-through with a bigger drill bit
creates a slightly larger hole

(Figures 5 and 6 - Each run-through with a bigger drill
bit creates a slightly larger hole)

Place one jumper on pin 9, GROUND, of the 40-pin
GPIO header. Place the other jumper on pin 15, (GPIO
237 if you are using an ODROID-C2).

Figure 7 - Place one jumper on pin 9, GROUND, of the 40-
pin GPIO header

You may have to check if the header has changed
during some of the hardware revisions. If you have an
ODROID-C1+ place the jumpers on pins 15, GPIO 3,
and 17, 3.3V.

Figure 8 - Check if the header has changed during
hardware revisions

Alrighty; let’s put it all together. Don't close the case
yet--we'll do that at the very end. In fact, put a small
piece of tape on some of the clips to prevent them
from accidentally clasping. Take a look at your
awesome new gaming console--isn’t it shiny?

Figure 9 - Truly, a thing of beauty

For comments, questions, and suggestions, please
visit the original post at
http://middlemind.com/tutorials/odroid_go/mr1_bui
ld.html.

http://middlemind.com/tutorials/odroid_go/mr1_build.html

Yocto on the ODROID-C2: Using Yocto with Kernel 5.0
 July 1, 2019 By Gaurav Pathak Linux, Tutorial

The Yocto Project (YP) is an open source collaborative
project that helps developers create custom Linux-
based systems regardless of the hardware
architecture. Yocto is not an embedded Linux
distribution, but it instead creates a custom one for
you. The project provides a �exible set of tools and a
space where embedded developers worldwide can
share technologies, software stacks, con�gurations,
and best practices that can be used to create tailored
Linux images for embedded and IOT devices; or,
anywhere a customized Linux OS is needed. This
article describes the basic steps and procedures for
building a custom ODROID-C2 Linux image using
Linux-5.0.

Prerequisites for Host System Setup

A Linux based build system is required for Yocto
project, it supports most of the major Linux desktop
and server distributions. A list of all supported Linux
distribution can be found at:
https://www.yoctoproject.org/docs/current/ref-

manual/ref-manual.html#detailed-supported-
distros. The Yocto project needs certain packages to
be installed on the host machine prior to starting a
custom Linux system build for target machine. The list
of host packages and tools required for a yocto build
can be found at:
https://www.yoctoproject.org/docs/current/brief-
yoctoprojectqs/brief-yoctoprojectqs.html#brief-
compatible-distro. For debian based systems, the
following packages are required to be installed:

$ sudo apt-get install gawk wget git-core diffstat

unzip texinfo gcc-multilib build-essential chrpath

socat cpio python python3 python3-pip python3-

pexpect xz-utils debianutils iputils-ping

Steps for Building a Custom Linux Image
for Odroid-C2

Note: The steps below have been tested on Ubuntu
16.04 host system. After performing the host system
setup (i.e., installing all the required packages) the

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html#brief-compatible-distro

next step is to get the source of the yocto project
build system. As we are going to use yocto for
building our custom image, we need yocto’s reference
distribution. Poky is a reference distribution of the
Yocto Project. It contains the OpenEmbedded Build
System, BitBake and OpenEmbedded Core, as well as
a set of metadata to get you started building your
own distro. The core layer provides all the common
pieces and additional layers change the software
stack as needed.

Getting Sources

The following instructions are based on upstream
warrior branch. Warrior branch has support for
building Linux Kernel 5.0. Download poky reference
distribution for yocto.

$ mkdir yocto-odroid

$ cd yocto-odroid

$ git clone -b warrior

git://git.yoctoproject.org/poky.git

Download ODROID BSP layer:

$ git clone -b warrior

git://github.com/akuster/meta-odroid

Download openembedded layer:

$ git clone -b warrior

https://github.com/openembedded/meta-

openembedded.git

Once you have downloaded all the sources into the
yocto-odroid directory, please make sure the
directory structure looks like Figure 1.

Figure 1 – Directory Structure of Yocto build setup

Starting A Build

Once you have all the sources and directory structure
as shown in Figure 1, then the build can be started by
the following steps: Initialize the build setup:

$ source poky/oe-init-build-env

The above command will create a build directory and
move you into that directory. We now have a
workspace where we can build an emulator and
reference board based images -- e.g. qemuarm. To
make an image compatible with our machine (i.e.,
ODROID-C2) we need to add the ODROID-C2 BSP
layer and meta-openembedded layer into the
workspace.

$ bitbake-layers add-layer ../meta-odroid/

$ bitbake-layers add-layer ../meta-

openembedded/meta-oe/

$ bitbake-layers add-layer ../meta-

openembedded/meta-python/

$ bitbake-layers add-layer ../meta-

openembedded/meta-networking/

Next, we need to modify the con�guration �le located
in the conf directory inside the build directory. Open
the local.conf �le located in conf/local.conf using your
favourite text editor.

$vi conf/local.conf

Do the following modi�cations in local.conf �le:
Search for

MACHINE ?? = “qemux86”

Comment it by putting and # before it or replace it
with

MACHINE ?? = “odroid-c2”

Find and Comment the following lines by putting a #
before them:

PACKAGECONFIG_append_pn-qemu-system-native = "

sdl"

PACKAGECONFIG_append_pn-nativesdk-qemu = " sdl"

Search for the line

EXTRA_IMAGE_FEATURES ?= "debug-tweaks"

append the following after “debug-tweaks”

ssh-server-openssh

such that the line should look as:

EXTRA_IMAGE_FEATURES ?= "debug-tweaks ssh-server-

openssh"

Now, copy the below lines and paste them at the end
of local.conf:

PACKAGECONFIG_remove_pn-xserver-xorg = "glamor"

IMAGE_FEATURES_append = " x11 "

DISTRO_FEATURES_append = " opengl x11"

DISTRO_FEATURES_remove = "wayland"

PREFERRED_PROVIDER_virtual/libgl = "mesa-gl"

PREFERRED_PROVIDER_virtual/libgles2 = "mali"

PREFERRED_PROVIDER_virtual/libgles1 = "mali"

PREFERRED_PROVIDER_virtual/egl = "mali"

PREFERRED_PROVIDER_virtual/mesa = "mesa"

IMAGE_INSTALL_append = "libgcc libgcc-dev

libstdc++ libstdc++-dev libstdc++-staticdev

 autoconf automake ccache chkconfig glib-

networking

 packagegroup-core-buildessential pkgconfig

 boost cmake zlib glib-2.0

 rng-tools

 logrotate

 lrzsz

 watchdog

 util-linux

 pciutils

 usbutils

"

IMAGE_ROOTFS_EXTRA_SPACE ="2097152"

INHERIT += "extrausers"

EXTRA_USERS_PARAMS = "usermod -P root root; "

Now save and close the local.conf �le. The workspace
is now ready to start a build. There are several types
of target images that can be built using yocto for
various use cases. Here, a graphical image based on
X11 and matchbox is built. Execute the following
command to kick start a build:

$ bitbake core-image-sato

The build will take some time depending upon the
processing power of the host machine and your

Internet connection speed. It may take from 30
minutes to several hours.

Steps to speed up the build process can be found at:
https://www.yoctoproject.org/docs/2.7/dev-
manual/dev-manual.html#speeding-up-a-build If,
during the build, any error related to “Timer Expired”
occurs, for example:

aclocal: error: cannot open

/home/gaurav/Downloads/yocto-

odroid/build/tmp/work/aarch64-poky-linux/alsa-

plugins/1.1.8-r0/recipe-

sysroot/usr/share/aclocal/ax_check_mysqlr.m4:

Timer expired

autoreconf: aclocal failed with exit status: 1

ERROR: autoreconf execution failed.

WARNING: exit code 1 from a shell command.

ERROR: Function failed: do_configure (log file is

located at /home/gaurav/Downloads/yocto-

odroid/build/tmp/work/aarch64-poky-linux/alsa-

plugins/1.1.8-r0/temp/log.do_configure.9191)

ERROR: Logfile of failure stored in:

/home/gaurav/Downloads/yocto-

odroid/build/tmp/work/aarch64-poky-

linux/mpg123/1.25.10-r0/temp/log.do_configure.9296

Then just simply clean the sstate cache and start the
build again from the target image using:

$ bitbake core-image-sato -c cleansstate

$ bitbake core-image-sato

Creating a Bootable SD Card

When the build is successful, the target images can be
found in the "tmp/deploy/images/odroid-c2"
directory. Shell command line tools like dd can be
used to create a bootable SD card. The user needs to
be cautious while using this tool. If the wrong device is
chosen, it can overwrite a hard disk belonging to the
build host. Execute following command in order to
write the image �le to your SD card.

$ cd tmp/deploy/images/odroid-c2

$ xzcat core-image-sato-odroid-c2.wic.xz | sudo dd

of=/dev/sdX bs=4M iflag=fullblock oflag=direct

conv=fsync status=progress

Please make sure that sdX points to the right device
(i.e., the mounted SD card). You can con�rm and �nd
the target SD card by executing this command:

$ dmesg|tail

[19001.706817] mmc0: new high speed SDHC card at

address e624

[19001.707251] mmcblk0: mmc0:e624 SU08G 7.40 GiB

[19001.718156] mmcblk0:

In the above case, the mounted SD card is “mmcblk0”,
on some host machines it can also come up as “sdb”
or “sdc”.

Figure 2 – ODROID-C2 Running Yocto Project Sato Image

Toggling GPIO in Kernel Space

There are several tutorials and sample code for
accessing GPIO. Almost all of them are based on the
legacy integer based gpio access. The below sample
code shows how to toggle gpio using a new descriptor
based gpio access. The code shown below may not be
a proper way to access gpio in kernel space as it’s just
an example. Based on the below code a character
driver can be written to create a node entry in /dev
such as /dev/gpio-test and then that node can be
used to send commands from userspace to toggle the
gpio using kernel space code.

/*File: gpio-toggle.c*/

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/printk.h>

#include <linux/init.h>

#include <linux/delay.h>

#include <linux/gpio/driver.h>

#include <dt-bindings/gpio/meson-gxbb-gpio.h>

struct gpio_chip *chip;

static int chip_match_name(struct gpio_chip *chip,

void *data)

{

 printk(KERN_INFO "Label: %s", chip->label);

 printk(KERN_INFO "Name: %s", chip->parent-

>init_name);

 printk(KERN_INFO "OF Node Full Name: %s", chip-

>of_node->full_name);

 return !strcmp(chip->label, data);

}

int gpio_test_init(void)

{

 int err = 0;

 printk(KERN_DEBUG "Init Called

");

 chip = gpiochip_find("periphs-banks",

chip_match_name);

 if (!chip) {

 printk(KERN_ERR "Cannot Find A GPIO Chip");

 return -ENODEV;

 }

 printk(KERN_DEBUG "Got valid GPIO Chip Total num

gpios %d

",

 chip->ngpio);

 err = chip->get(chip, GPIOX_11);

 printk(KERN_INFO "Before Setting Value %d

", err);

 err = chip->direction_output(chip, GPIOX_11, 1);

 if (err < 0) { printk(KERN_DEBUG "Error Setting

GPIO Direction %d", err); } chip->set(chip,

GPIOX_11, 1);

 err = chip->get(chip, GPIOX_11);

 printk(KERN_INFO "After Setting Value %d

", err);

 mdelay(2000);

 chip->set(chip, GPIOX_11, 0);

 err = chip->get(chip, GPIOX_11);

 printk(KERN_INFO "After Clearing Value %d

", err);

 return 0;

}

void gpio_test_exit(void)

{

 printk(KERN_DEBUG "Exiting....

");

}

module_init(gpio_test_init);

module_exit(gpio_test_exit);

MODULE_LICENSE("GPL");

Below is the Make�le to compile the above Kernel
Module:

obj-m += gpio-toggle.o

KSRC = </path/to/pre-compiled/kernel-source>

EXTRA_CFLAGS = -I$(KSRC)/drivers/pinctrl/meson

EXTRA_CFLAGS += -I$(KSRC)/drivers/

CFLAGS_gpio-toggle.o := -DDEBUG

all:

 make -C $(KSRC) M=$(PWD) modules

clean:

 make -C $(KSRC) M=$(PWD) clean

Please note that in the above Make�le, the variable
KSRC needs to be set so it points to the
location/directory where the pre-compiled Linux 5.0
kernel is located. The yocto build system places the
compiled linux kernel in:

build/tmp/work/odroid_c2-poky-linux/linux-

stable/5.0.6+gitAUTOINC+172634f02e_machine-

r0/linux-odroid_c2-standard-build/

The absolute path of the pre-compiled Linux Kernel
5.0 in our case is:

/home/gaurav/Downloads/yocto-

odroid/build/tmp/work/odroid_c2-poky-linux/linux-

stable/5.0.6+gitAUTOINC+172634f02e_machine-

r0/linux-odroid_c2-standard-build

So, the KSRC variable would become:

KSRC = /home/gaurav/Downloads/yocto-

odroid/build/tmp/work/odroid_c2-poky-linux/linux-

stable/5.0.6+gitAUTOINC+172634f02e_machine-

r0/linux-odroid_c2-standard-build

Command to compile and clean the above Kernel
Module:

$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

clean

Once the above kernel module is compiled
successfully, it should produce a .ko �le. In our case, it
will be gpio-test.ko.

If the ODROID board is connected to a network,
transfer the �le either using “scp.” Else, if the board is
not connected, then minicom’s Xmodem �le transfer
utility can be used to transfer a �le to the target
machine. NOTE: the Xmode receive utility package is
compiled and installed on our target machine as a
part of Yocto build. Connect a LED to pin 13 of 40-pin
header J2, as shown below:

Figure 3 – Led Connection on OdroidC2 Board

Then insert the module by executing:

$ insmod gpio-toggle.ko

The LED connected to GPIOX_11 i.e. pin 13 of J2
header on Odroid C2 should turn ON and turn OFF
once.

Linux Gaming on ODROID: Gaming on ODROID-N2 – Desktop and
gl4es
 July 1, 2019 By Tobias Schaaf Gaming

The ODROID-N2 is still fairly new, but has already
been around for a couple of months. Many like it due
to the fact it has a very fast processor and GPU, as
well as more RAM than previous ODROID models.
Still, because we do not have X11 drivers for the
system, the capabilities of the ODROID-N2 are
somewhat limited for now. I want to explore what is
currently possible, and what we can do playing games
on the ODROID-N2 from a desktop.

Current situation

We’ve already seen there are gaming images out
there, and using Retroarch with a frontend like
EmulationStation is not a big deal and nothing new. It
has been done before, and not what I will discuss in
this article. PPSSPP also seems to work �ne, but these
are applications that run in a single application mode,
meaning they are the only application running and
can’t be used from a desktop (although they start

from a desktop and therefore can be used here as
well). However, many users want to use the N2 as a
desktop replacement while hopefully having a �uent
experience on both desktop and applications, but
since the ODROID-N2 does not have X11 video
drivers, there are fewer options.

Figure 1 - ODROID-N2 MATE desktop with compositing
allows for transparent terminal window

The N2 is quite good at running as a desktop
replacement, and the fast CPU allows for desktop

composing which allows for transparent windows,
giving the N2 a look and feel of a faster desktop
computer. The lack of hardware acceleration is a
noticeable downside, especially on the web browser.

While Chromium is very sluggish, especially when
playing YouTube videos, Firefox works slightly better,
but still both do not have hardware acceleration, so
there is no WebGL support or hardware accelerated
scrolling. Still, we found with the help of @ptitSeb’s
gl4es (an OpenGL to OpenGL ES wrapper) that many
programs can be run with OpenGL acceleration in a
“Full-Screen” Mode. That allows you to run a number
of games that I already built and con�gured for
ODROIDs to run on the ODROID-N2 as well.

Setting up the environment

After I installed MATE desktop with GPU drivers, I
needed to install gl4es from my repository, but also
installed monolibs-odroid as it provides a libSDL2
version that supports OpenGL, which by default is
disabled in my libSDL2 versions for ODROIDs, as it
normally uses OpenGL ES. We still need it to get
things running, so I installed both:

$ apt install -t stretch libgl-odroid monolibs-

odroid

Most of the applications won’t start directly form
menu and have to be started from command line,
otherwise they either use MESA Software OpenGL, or
the wrong SDL2 version. Therefore, I setup my
environment by de�ning the following variables:

export LIBGL_FB=1

export LIBGL_GL=21

export LD_LIBRARY_PATH=/usr/local/lib/monolibs

Some of the games we try were already made to use
OpenGL and gl4es in the �rst place, so the only
di�erence for these applications is the option
“LIBGL_FB=1”, so it can be worth putting this variable
into /etc/environment instead as this will activate it
globally for all applications (requires reboot). Not all
programs will run with the other two options in the
environment �le so you should skip them. With this I
could start most of the applications directly from the
terminal. In rare cases, I had to do a few other things,
but I will explain them when it comes to it.

One thing I noticed is that all games seem to run at
around 45 FPS. I don’t think this is due to low
performance, but probably a limitation of the X11
drivers. Now, with our setup being complete, let’s see
what games we can get to work.

Cendric

Cendric is an RPG in a slight retro style. Many of the
graphics seem hand drawn or drawn at the computer,
but the game is not bad at all. It uses X11 and OpenGL
directly, so it could start nearly by itself. As long as the
LIBGL_FB=1 variable is set, you can run the game
from the command line, or even from the menu. The
game has some graphical issues, like other ODROIDs,
but I’ve encountered an issue that when the game
switches from world map view to dungeon view, the
screen is not updated, and you see the last picture
you saw before the level. Exiting the game with ALT +
F4, restarting the game and resuming it, and you’re in
the new area you wanted to enter. Overall the game
works well with the drivers, but the error with the
switching of the world view is slightly annoying.

Figure 2 - Cendric on the ODROID-N2 started directly
from the start menu (with environment variable)

Dune Legacy

This is one of my all time favorite games. Dune 2, the
grandfather of all modern RTS (real time strategy
games), and Dune Legacy is an improved and
optimized version of the game with a better interface
and control options than the original had.

Figure 3 - Dune Legacy on the ODROID-N2 - one of the
early levels

Dune Legacy relies on SDL2 as a graphics driver,
which on my ARM64 image is normally using OpenGL
ES as a default, but since we do not have OpenGL ES
with X11 support, we need a version that supports
OpenGL and use gl4es. This works as long as we run
the game with
“LD_LIBRARY_PATH=/usr/local/lib/monolibs”, which
means it’s best to start it from command line.

That, together with the LIBGL_FB=1 options, is enough
to run the game. Aside from some transparency
issues, I have not seen any problems with the game.
All the menus work, the game works �ne and is �uent.
It’s fully playable and can be enjoyed on the ODROID-
N2.

EasyRPG Player

EasyRPG Player is an interpreter for RPG Maker 2000
and 2003 games which requires SDL2 as well, so you
need to start it from the command line. It doesn’t use
any shader as far as I know, so hardware acceleration
is not really needed, but you need it to start the
interpreter.

Figure 4 - Blue Skies running on EasyRPG Player

There isn’t much to say about it except that it works
�ne. I haven’t seen any issues that wouldn’t be
present with any other ODROID as well.

Friking Shark

This game is a remake of the classic Flying Shark (aka
Sky Shark) arcade game which was ported to many
di�erent platforms such as the Amiga, C64, or NES.
This 3D remake uses OpenGL 2.0 and shaders, so it’s
not as simple as other games and had quite some
issues in the past with gl4es. Currently, it runs
beautifully on the ODROID-N2 with gl4es and
LIBGL_FB=1 alone. Since it only runs on OpenGL and
doesn’t require SDL2, it can be started directly from
the menu if you set the environment variable.

Figure 5 - Friking Shark on the ODROID-N2

Frogatto (and friends)

This platformer turned out to be one of the more
complicated games to get to work. I created a version
that is able to run directly under OpenGL ES/EGL/X11,
but this doesn’t work for the ODROID-N2 because of
the lack of X11 OpenGL ES drivers.

This version can’t be used for gl4es because it’s
rewritten to use OpenGL ES/EGL/X11, so I turned to
the version provided by Debian itself. It only requires
SDL 1.2 as well as OpenGL and needs to be started
with both LIBGL_FB and LD_LIBRARY_PATH. Although
this method is working, it reveals another issue that I
�xed with my version of the game: it only starts in
800x600 resolution and this can’t be con�gured.
Therefore the screen looks rather bad unless you
change the resolution of your ODROID to 800x600 as
well. Still the game works �ne despite these graphical
issues.

Figure 6 - Frogatto and Friends runs only in 800x600 - the
rest will be blanked out

Gigalomania

This remake of MegaLoMania, which is a strategy
game that I loved on the Amiga, uses SDL2 to render
its graphics, so it also needs LIBGL_FB and
LD_LIBRARY_PATH. The game doesn’t do anything
fancy with the graphics so it should work �ne.

Figure 7 - Gigalomania on the ODROID-N2

GZDoom

GZDoom is an engine that allows you to play games
based on the Doom engine. There are tons of games
that are even published today that push the Doom
engine to its limits and beyond. This particular version
uses OpenGL to optimize graphics and add more
lighting e�ects, fog, etc. Everything should be
compiled in, so as soon as you have LIBGL_FB setup,
you can start it from the menu or terminal as you like.

Figure 8 - Castlevania: Simon's Destiny for GZDoom

Figure 9 - Classic Doom running on ODROID-N2 with
GZDoom

Hedgewars

Hedgewars was one of the �rst games I tried with this
method, and it worked quite well. This Worms clone is
very fun to play and should run perfectly �ne on your
ODROID-N2 with gl4es. But it requires both LIBGL_FB
and LD_LIBRARY_PATH. Make sure to con�gure the
game to use fullscreen mode.

Figure 10 - Hedgewars on the ODROID-N2 runs �ne even
with much going on on the screen like falling leafs and
explosions

Naev

This one was a little bit tricky, as the game starts
without a con�g �le and in window mode, but needs
to be controlled via mouse and keyboard, which made
it very hard to interact with at �rst.

“luckily” the window of the game was �ashing in the
background when I �rst started the game so I could
move the frame of the window to the lower left
corner where the picture of the game was shown.
After that the menu was somewhat useable and I
could con�gure the screen to use fullscreen mode in
1080p after which the game worked perfectly �ne.

The game only uses SDL 1.2 and OpenGL which was
already linked correctly by me, so it should run with
LIBGL_FB only directly from the menu.

Figure 11 - Naev’s main menu

Figure 12 - An in-game screenshot of the game both was
working �ne and I had no issues

Neverball / Neverputt

Both games from the Debian repository are working
�ne, but require LIBGL_FB and LD_LIBRARY_PATH as
it’s using SDL2 and OpenGL for rendering, so starting
from command line is easiest. After that the game
should run without issues.

Figure 13 - Neverball on the ODROID-N2, with nice
lighting e�ects on the Lava ball

OpenXCom

This is one of my all-time favorite games. A turned
based tactical game with strategy and resource
management. It has tons of options for modding, and
supports both the original UFO Enemy Unknown and
Terror from the Deep games. The game uses SDL 1.2
and OpenGL, which is already linked correctly so it
should be �ne to just start the game from menu once
you set up LIBGL_FB.

Figure 14 - OpenXCom on the ODROID-N2 graphically not
very demanding but runs on steady 60 FPS

This game is a little bit confusing: even though as it’s
the only one running in 60 FPS, it uses software
rendering in this case. Also, if I activate OpenGL for
rendering, the game crashes, so using shaders
doesn’t work, even though it does work to a certain
degree on other platforms. Still, the game is fully
playable with just software rendering and has a
nostalgic but modern experience.

RVGL (ReVolt)

This one was a little bit harder getting to work. It has
di�erent backends which allow the switching between
OpenGL or OpenGL ES, as well as de�ning if you want
to use shaders or not. You can de�ne this in a con�g
�le, but the con�g �le is only created if you change
something, which means you have to be able to start
the game to create the con�g �le, but you can’t start
the game unless you have the correct con�g, which
makes this one more tricky to run. I copied the con�g
from my ODROID XU3 and changed
/home/odroid/.rvgl/pro�les/rvgl.ini:

GLProfile = 1

Shaders = 0

ScreenWidth = 1920

ScreenHight = 1080

This game also requires us to use, in addition to the
LIBGL_FB and LD_LIBRARY_PATH, the LIBGL_GL=21
option, which set gl4es into OpenGL 2.1 compatibility
mode, otherwise the game will crash at after the �rst
logo. After all of these changes though, the game runs
�ne.

Figure 15 - RVGL one of the most stunning looking
OpenGL applications for ODROIDs

SuperTux 2

This Linux version of Mario, when installed from my
repository as described at
https://forum.odroid.com/viewtopic.php?t=5908,
should already be linked against the correct libraries,
so only LIBGL_FB is required to start the game. You
might want to edit
/home/odroid/.local/share/supertux2/con�g though
and activate fullscreen #t and set the correct screen
dimensions.

Figure 16 - Super Tux 2 on the ODROID-N2

SuperTuxKart

This Linux Mario Kart clone was not easy to get to
work, and has some issues here and there. First of all,
the version from my repository was made for OpenGL
ES and won’t work with the ODROID-N2, but the
version from Debian Stretch does work, and was
made for OpenGL. It requires LIBGL_FB and
LD_LIBRARY_PATH to work, but normally would
require OpenGL 3.1 or higher, which is not supported
by gl4es. Therefore, it goes into a fallback Legacy
mode, which runs on OpenGL 1.x without shaders. It
has very reduced graphics and no transparency or

https://forum.odroid.com/viewtopic.php?t=5908

re�ections, and I think some elements are not shown
at all. Still, the game works and is rather fast.

Figure 17 - Super Tux Kart on the ODROID-N2, not
perfect but still fun to play

VICE

VICE is the Versatile Commodore Emulator. Since it
uses SDL2, it requires both LIBGL_FB and
LD_LIBRARY_PATH. Afterwards, when you start the
emulator, you can activate the option screen with F12
and turn Fullscreen mode on, after which the picture
should look normal and you can run your favorite
Commodore games.

Figure 18 - Giana Sisters for C64 running under VICE on
the ODROID-N2

I could run even more games such as Witchblast or
Yquake 2 (Quake 2 OpenGL remake), which run well
but had minor issues (Yquake ran rather nicely but
was slower than expected), and there are a few
games I haven’t had time to try yet.

Conclusion

Of course, not every game I tried did actually work,
and there were a few I couldn’t get to start.
CGMadness, for example, crashed when I entered the
game, even though the main menu worked. CorsixTH
(Theme Hospital) did not update the screen properly
and you could read any items on the screen.
OpenClaw did not start at all, and I couldn’t �gure out
why. Some games worked but had graphical issues,
such as Witchblast, but overall I was very surprised
how many games actually did work. Some of these
games could even be put in the background by simply
pressing alt + tab to get back on the desktop, which
worked well on a few games that supported this. This
is all thanks to @ptitSeb’s impressive gl4es driver,
which allows us to run these applications from a
desktop. It may not be able to run everything we want
from a desktop, but with some workarounds, a good
deal of applications seem to be capable to run on the
N2, many of which are not available under fbdev and
require a working X11 environment.

ODROID-Go Thermal Infrared Camera
 July 1, 2019 By Andrew Thomas ODROID-GO, Tinkering, Tutorial

This is a simple IR (infrared) thermal camera project
for the ODROID-GO handheld ESP32 system. It allows
saving of data to an SD card as well as having a basic
Bluetooth interface to wirelessly get data o� the
camera to a computer, tablet or mobile phone. It is
based on the MLX90640 32x24 pixel infrared thermal
array modules that you can get relatively
inexpensively from many online shops. Below is a
photo of this camera in action.

Figure 1: The thermal camera in action

Using the Arduino code

There are two ways to use the thermal camera code.
The really simple way is to go to the 'FW �le' folder
and copy the 'goircam.fw' �le to the �rmware folder
on your ODROID-GO SD card. Then, when you turn
the ODROID-GO on, while holding down the B button,
you should get an option to load the camera
�rmware. Obviously you will need the camera built
and attached for the �rmware to run.

The second, more advanced, way is for people who
want to use the Arduino IDE to edit or build the
�rmware as an Arduino Sketch. To do this, use the
�les in the 'Arduino code' folder as you would do for
coding any other Arduino project you have. All of the

details are available on the ODROID-GO Wiki site for
setting up the Arduino IDE for the ODROID-GO.

If you are using the Arduino IDE method and want to
create a �rmware �le, as described on the ODROID-
GO Wiki site, the graphics for use with the MKFW
utility are included in the 'Graphics' folder.

Building the thermal camera module

Building the camera is very simple, as it uses just the
MLX90640 module, with wires for ground, VCC, SCL
and SDA (I2C). According to the ODROID-GO Wiki, the
header pinout is as follows:

Header Pin Function

1 GND

4 SDA

5 SCL

6 VCC

Once you have things wired up and tested, the
simplicity of the circuit makes it very easy to solder up
some header pins onto a piece of veroboard to make
a more robust connector for the ODROID-GO header
socket. Below is a photo of how I did that.

Figure 2 : A photo of the circuit

I put the header pins on top of the veroboard and
soldered the wires to the track on the back, which
meant the wires did not obstruct the connection,
although you could just use a bigger piece of
veroboard, too.

Making a 3D printed enclosure

The 'Case 3D model' folder includes a couple of �les I
used to make a 3D printed enclosure. One of them is
a ready-to-print STL �le. This �le is designed for the
Pimoroni MLX90640 module I used. If that does not
work for your needs, or the MLX90640 module you
have, the OpenSCAD �le is included so you can make
a customized version for your project. The camera

module �ts, as shown in the photo above. This
photograph also shows the correct orientation for the
module. By cutting the veroboard to the right size, it
�t perfectly into the back of my enclosure, leaving the
header pins properly positioned (see Photo 3). The
veroboard was glued in place and it was necessary to
check the pin’s alignment before the glue cured.

Figure 3 : A photo of the back of the enclosure showing
the header pins glued in

References

The ODROID-GO Wiki is a useful resource for all Go
things: https://wiki.odroid.com/odroid_go/odroid_go

The Wiki page for a 16x2 I2C LCD project contains
details of how to connect an I2C module to the
ODROID-GO header:
https://wiki.odroid.com/odroid_go/arduino/09_16x2l
cd_i2c

The 3D printed case can also be downloaded from
Thingiverse:
https://www.thingiverse.com/thing:3648653

https://github.com/drandrewthomas/Odroid_Go_th
ermal_IR_camera

https://wiki.odroid.com/odroid_go/odroid_go
https://wiki.odroid.com/odroid_go/arduino/09_16x2lcd_i2c
https://www.thingiverse.com/thing:3648653
https://github.com/drandrewthomas/Odroid_Go_thermal_IR_camera

RetroELEC for the ODROID-XU4: Emulation Station, RetroArch
and Kodi In One Convenient Image
 July 1, 2019 By @escalade Gaming, Linux, ODROID-XU4, Tutorial

I've been creating Lakka and RetroPie style builds of
OpenELEC/LibreELEC for the past few years. Recently,
I purchased an ODROID-XU4 for my new bartop
arcade system. This appliance style "JeOS" Linux
distribution is perfect for running emulators, as it
boots lightning fast and uses a minimum of
resources.

This image boots up directly into Emulationstation or
Kodi/RetroArch. The emulators are integrated; simply
put ROMs in the /storage/roms directory via SMB.
Emulators commonly auto-detect controllers,
however, Emulationstation must be con�gured
manually, except DS4 which is pre-con�gured. A
keyboard might come in handy for initial setup.

Features

Based on LibreELEC

Compiled from source with the following CFLAGS: -O2 -
march=armv7ve -mtune=cortex-a15.cortex-a7

mcpu=cortex-a15.cortex-a7 -m�oat-abi=hard -
mfpu=neon-vfpv4 -�to

Built for GBM KMS/DRM (no Xserver and no fbdev)

Latest Linux 5.0.3 kernel from @memeka

F2FS/BTRFS/XFS support

ODROID WiFi/Bluetooth modules work “out of the box”

Emulationstation (RetroPie fork) is the default frontend
that launches the emulators; the default can be
changed in /storage/.con�g/frontend.conf and
RetroArch can also be launched through its menus

RetroArch (git master) with recording capabilities

Libretro cores: desmume, dosbox-svn, fbalpha,
mame2003-plus, mame2016, mgba, mupen64plus,
pcsx_rearmed, ppsspp, puae, quicknes, reicast,
scummvm, snes9x, snes9x2010, vice_x64,
yabasanshiro

Standalone emulators: PPSSPP, Dosbox-SDL2,
amiberry

Pulseaudio/BlueZ set up to accept A2DP (bluetooth
audio) so you can stream music from your phone or

laptop while gaming, simultaneously

big.LITTLE cgroups (emulators are run exclusively on
the big cores)

htop enhanced with big.LITTLE support

USB IRQs assigned to big cores

Utilities: scraper tcpdump rsync unrar p7zip cgroup-
tools sdl-jstest mediainfo strace screen omxplayer

Services: Docker, Transmission, SABnzbd, Plex
(automatically downloads/updates and installs through
the systemd unit), ttyd (shell access from a browser)

You can start the services that you want via SSH with
the following command structure:

$ sudo systemctl enable/start [docker |

transmission | sabnzbd | plex | ttyd]

You can download RetroELEC from
https://tinyurl.com/yynfv8m5. If you want Kodi to be
included, you can �nd those images in a separate
subfolder. The source code is available on Github at
https://github.com/escalade/RetroELEC.tv. For
comments, questions, and suggestions, please visit
the original ODROID forum thread at
https://forum.odroid.com/viewtopic.php?
f=96&t=34647.

https://tinyurl.com/yynfv8m5
https://github.com/escalade/RetroELEC.tv
https://forum.odroid.com/viewtopic.php?f=96&t=34647

Lutris: Gaming on the ODROID-H2
 July 1, 2019 By Adrian Popa Gaming, ODROID-H2

For about twenty years, the Linux community kept
trying to make the current year "the year of the Linux
desktop" - a mythical time when Linux desktop
popularity would surpass Windows. Unfortunately, it
has not happened yet, but at least in one aspect Linux
is gaining popularity: gaming support. With the advent
of Wine, Steam and Vulkan, more and more games
are becoming playable on Linux systems, releasing
gamers from the dreaded Windows Update cycle of
death. Please note that Linux gaming is not
something for the novice Linux user (yet), but
hardened users might enjoy setting up the
environment more than playing games.

This article will take a look to see what is needed to
set up a basic gaming system on an ODROID-H2,
which are available in the Hardkernel store at
https://www.hardkernel.com/shop/odroid-h2/. As
you know, the ODROID-H2 is based on Intel
architecture and can play many more games than the
ODROID-XU4. We will see just how far we can go.

Note that since the ODROID-H2 is not a true "gaming
PC", do not expect miracles, but it can run some 5-10
year-old games with decent performance.
Unfortunately, Linux will su�er some performance
degradation when running Windows games since the
various adaptation layers add some system overhead.

Introducing Lutris

Lutris is an open source gaming platform for Linux
that can install and launch games reducing the setup
hassle. It can get games from online platforms like
GoG, Steam or Battle.net, but can also manage games
for various platforms (from Amiga to DOS, Windows,
native Linux or Browser games). The platform has
various scripts that take care of downloading your
desired game and applying the needed
patches/changes to make it run as best as possible.
You can browse a list of supported games on their
website https://lutris.net/games/, or search for a
game title in the application.

https://www.hardkernel.com/shop/odroid-h2/

Installation instructions are available at
https://lutris.net/downloads/. The steps depicted are
run on a stock Ubuntu 19.04 image running on
ODROID-H2. Video instructions are available at
https://youtu.be/oHDkeQ9eDrc.

$ sudo add-apt-repository ppa:lutris-team/lutris

$ sudo apt-get install lutris

While you are in the shell, you should also install Wine
if you plan on running Windows games (I used the
standard Ubuntu version):

$ sudo apt-get install wine

Some games may require di�erent Wine versions (or
proton-enhanced Wine), but you can install those
from within the Wine Runners section inside Lutris.
Each Wine can have its own environment (called
Bottle) so that multiple versions can coexist.

For Windows games, you can install an extra
translation layer called DXVK which does the
translation from DirectX 11 to Vulkan. First of all, you
need to install the Vulkan drivers:

$ sudo apt install mesa-vulkan-drivers mesa-

vulkan-drivers:i386

You can also install vkmark which is a benchmark for
Vulkan similar to glmark. Running it should prove to
you that vulkan support works as expected in your
Ubuntu system. The tool needs to be compiled, so
you can follow these steps:

$ sudo apt install meson libvulkan-dev libglm-dev

libassimp-dev libxcb1-dev libxcb-icccm4-dev

libwayland-dev libdrm-dev libgbm-dev git

$ git clone https://github.com/vkmark/vkmark.git

$ cd vkmark

$ meson build

$ ninja -C build

$ sudo ninja -C build install

You can now run vkmark and see the demo rendered
with the Vulkan API.

Figure 1 - Vkmark in action

The Vulkan API can now be used by Linux applications
that know how to use it. Now we can add the DXVK
translation layer
(https://github.com/lutris/lutris/wiki/How-to:-DXVK),
which is as easy as typing the following command:

$ sudo apt-get install dxvk

Lutris management

Now that we have everything set up, we need to add
games to Lutris. You can start Lutris, or browse their
Web site, �nd a game you want to install, and click
Install. You should also manage your runners, which
are enable external programs that are needed to run
emulated games. You can click on the Lutris icon (top
left) and select "Manage Runners". From the list, you
can enable the platforms that you want to use (for
example DosBox, ScummVM, Wine, etc). From here,
you can also con�gure various options speci�c for
that runner.

Figure 2 - Manage runners

We can now download and install some games. Let us
start with something simple: a native linux game like
Super Tux Kart. You can search for the title in the
Lutris search bar, highlight it and click Install. The
installer will prompt you for some questions, so
answer as best you can.

Figure 3 - Super Tux Kart

Once the installer �nishes, you can launch the game
from the menu.

Figure 4 - Super Tux Kart - playthrough

Note that, even if the game runs smoothly, on the
ODROID-H2 some textures are glitchy, which are
probably due to the Intel drivers implementation. At
least installation was smooth.

To install something from GoG for example, you need
to log into GoG via Lutris. First search for the desired
GoG game (e.g. Tyrian2000). You will be prompted for
your GoG credentials and then the game will be
downloaded and installed seamlessly.

Figure 5 - GoG installation

Let us now try something more taxing that your
average ODROID-XU4 cannot do. In order to install
Steam games (either Linux or Windows), you �rst
need to install the Steam client:

$ sudo apt-get install steam

You can install Steam games in two ways - either
through Steam, or through Lutris. For the �rst
method, you should start Steam and log in with your
account and you can go to your game library and
install a game locally. Once it is installed, you can

return to Lutris and add it to the launcher by selecting
"+" -> Import Games -> Steam. Tick the game/games
you want to import and select Import Games.

I installed Team Fortress 2 (which is free on Steam)
directly from Lutris, by searching for it in the Lutris
search tab, clicking install and waiting for it to �nish.
The game ran �ne (as expected) under Linux.

There may be cases where you have a local copy of a
game (from a backup or an original install media) that
you want to install, or maybe you want to install an
unsupported game (or legally challenged one). You
can do that too. In my case I wanted to install the
Windows version of Lucas Chess
(https://lucaschess.pythonanywhere.com/). The steps
are as follows:

Download the installer

Inside Lutris, select "+" -> Add game. Give it a name
and select the correct runner for that game. In my
case, it was wine.

Figure 6 - Add manual game

Under the Game Options tab select your installer
executable inside the Executable �eld. You probably
do not need to add any arguments. Wine pre�x is
usually set inside ~/Games/GameName and will hold
the wine environment and game data. Ideally it
should not overlap with other games.

Figure 7 - Game options

Under the Runner Options tab you can select the wine
version that you want to use (you can install several
wine versions from Manage Runners -> Wine). You
can also activate DXVK support if you need it.

Figure 8 - Runner Options

Click save and you can now use the new entry to run
the installer. The installer should go on as if it were
running in Windows, and when it �nishes, you'll need
to edit the game launcher (press the Con�gure
cogwheel symbol next to Play), go back to Game
Options and change the executable to point to the
installed game instead of the installer (you can
browse for the game executable).

If you are experiencing font problems with your
program, you can install missing Windows fonts by
right-clicking on the game title (or left clicking and
selecting from the right panel) and selecting
Winetricks -> Select the default winepre�x -> Install a
font -> allfonts. It will take a while, but make sure to
try the game again afterwards. There are also
Windows settings you can change from winetricks,
like fontsmooth=rgb for example.

Figure 9 - Running a manually installed game

I did a test with GTA V to see how high-end games
performed on the ODROID-H2. Under Windows, it
runs at about 20-30 fps with everything on minimum
at an 800x600 resolution. Under Linux, it runs at
about 15-25 fps at the same settings, but sometimes
stutters. So, there was a bit of reduction in
performance, but it still played decently. For a casual
gamer and Linux enthusiast it might be worth it.
Imagine how well games would run with a high-end
GPU!

Getting controllers to work

The Gamesir G3w controller sold by Hardkernel
should work out of the box on Windows. However, we
are not on Windows, so we need to tinker a bit. Note
that the controller has two operating modes - Xiaoji
Gamesir-G3w (two LEDs “on” underneath the
controller) and an Xbox 360 mode (one red LED). You

can switch between modes by holding the "GameSir"
central button for about 10 seconds. The Xbox 360
mode is good for Android (look for Octopus on the
play store), but for Linux you need to be in the Xiaoji
Gamesir-G3w mode. You can check your current
mode by checking for this USB ID (note that my
Ubuntu reports it as Apple, but it is not):

$ lsusb | grep 05ac:055b

Bus 001 Device 007: ID 05ac:055b Apple, Inc.

You can now install jstest-gtk to test the buttons:

$ sudo apt-get install jstest-gtk

If you do not get events, most likely your user is not
part of the "input" group - so make sure to add
yourself to that group and re-login.

Figure 10 - Joystick test

Actually using the controller depends on the
game/emulator being used. Some games (like Need
for Speed 2 SE https://github.com/zaps166/NFSIISE)
support the gamepad as a joystick out of the box. You
just need to map your joystick buttons to the actions
in the game.

Figure 11 - Native joystick support

For other games, you may need to map joystick
events to keys. You can do so with the qjoypad
application:

$ sudo apt-get install qjoypad

I am trying to add controller support to an old DOS
game called Prehistorik 2. It just needs
Left/Right/Up/Down and Space - which is the �re
button. For this, we create a new pro�le called "Pre2" (
after starting the application, you can select the main
window from its Status bar icon). The easiest way is to
select "Quick set" and you will be prompted to push a
button on the controller, followed by a key to be
emulated.

Figure 12 - Joypad mapping

To wrap things up, it would be best to set the correct
pro�le when starting the game. You can do so by
editing the game settings -> System options -> "Show
advanced options". You can set the path to a script
(sadly it does not take parameters yet) that will launch
qjoypad with the correct pro�le before starting the
game. Create the following script, save it and mark it
as executable:

$ cat Games/pre2/qjoypad.sh

#!/bin/bash

/usr/bin/qjoypad Pre2

$ chmod a+x Games/pre2/qjoypad.sh

From the list locate "Pre-launch command" and add
"/home/odroid/Games/pre2/qjoypad.sh". Save and
enjoy! (Big thanks to @meveric for assistance to
getting the gamepad working)

Android via anbox (Android in a Box)

What if you have some Android games that you want
to play? Fortunately there is no need to dual-boot to
Android - you can run Android apps in a Linux
container with anbox!

Note that the project is still young and only provides
an early beta you can play with, so expect occasional
crashes, but through the magic of Linux namespaces
and with the addition of two Android kernel modules,
you can run a core x86 Android 7.1.1 image on top of
which you can install your apps, although not all apps
may work. You can �nd installation instructions at
https://github.com/anbox/anbox/blob/master/docs/
install.md.

https://github.com/anbox/anbox/blob/master/docs/install.md

$ sudo add-apt-repository ppa:morphis/anbox-

support

$ sudo apt install anbox-modules-dkms

$ sudo modprobe ashmem_linux

$ sudo modprobe binder_linux

$ sudo snap install --devmode --beta anbox

You will get a launcher icon in your linux GUI (I had
mine under Others) called Android Application
Manager that can be used to start the app launcher.

Figure 13 - Android Application Manager

Now that Android is up and running, how do you
install apps (I presume you got tired of playing with
the Calculator)? Let us install Play Store (and ARM
application support via libhoudini) by following the
simple guide at
https://www.linuxuprising.com/2018/07/anbox-how-
to-install-google-play-store.html.

$ sudo apt-get install git

$ git clone https://github.com/geeks-r-us/anbox-

playstore-installer.git

$ cd anbox-playstore-installer/

$ sudo ./install-playstore.sh

$ sudo apt-get install lzip

$ sudo ./install-playstore.sh

Make sure to give all the permissions required by
Google Play and Google Services in Android Settings -
> Apps -> … -> Permissions, otherwise you will run
into weird errors.

Figure 14 - All the permissions

When you start Play store it asks you to login with
your account, which should work in your case. In my
case, I was logging in with my kid's account which is
tied into Google Family (for parental supervision) and
login failed because the emulated device lacked some
security features required by Google. There is another
way of installing apps though: you can use adb to
sideload any apk:

$ sudo apt-get install adb-tools

$ adb devices

List of devices attached

* daemon not running; starting now at tcp:5037

* daemon started successfully

emulator-5558 device

$ adb install F-Droid.apk

Success

I went with F-Droid - the open-source alternative app
store (https://f-droid.org/en/), and from there I could
install a simple game called Reckoning Skills (https://f-
droid.org/en/packages/org.secuso.privacyfriendlyre
cknoningskills/) meant to challenge my child's math
skills.

https://www.linuxuprising.com/2018/07/anbox-how-to-install-google-play-store.html
https://f-droid.org/en/
https://f-droid.org/en/packages/org.secuso.privacyfriendlyrecknoningskills/

Figure 15 - F-Droid

If you get into trouble you can restart your emulated
Android device with:

$ sudo snap restart anbox

You can get (lots and lots!) of logs with adb logcat if
you want to troubleshoot something, and if you need
access to the "userdata" partition, you can �nd its �les
in /var/snap/anbox/common/data/data

Add Android app to Lutris

Having playable content from Android is nice and all,
but maybe you would like to have it integrated under
a single launcher. To do this, you'll need to �nd the
desired app's package name (program identi�er) and
entry activity (the startup window). You will need to
connect through adb while the desired app is running
in foreground and run:

$ adb shell

x86_64:/ $ dumpsys window windows | grep -E

'mCurrentFocus'

mCurrentFocus=Window{67dc1f0 u0

org.secuso.privacyfriendlyrecknoningskills/org.sec

uso.privacyfriendlyreckoningskills.activities.Main

Activity}

The string highlighted in orange is the package name
of the current application, while the blue string is the

activity name. With this information, you can now
start this Android app from a shell (you'd better stick
to copy/pasting them instead of typing):

$ anbox launch --

package=org.secuso.privacyfriendlyrecknoningskills

--

component=org.secuso.privacyfriendlyreckoningskill

s.activities.MainActivity

You can now add a manual entry for your game under
Lutris. Select the Linux Native runner and add
/snap/bin/anbox as the executable. You will need to
add launch --
package=org.secuso.privacyfriendlyrecknoningskills --
component=org.secuso.privacyfriendlyreckoningskills.
activities.MainActivity under the parameters entry
(without quotes). Save and enjoy your new launcher.

Figure 16 - Launching an Android game from Lutris

Note that even if it is currently buggy or tedious to
setup, anbox is getting better with every release and I
expect it will be better integrated with Lutris in the
future. I hope this guide into the world of games on
Linux has helped you get started. If you get stuck, you
can ask for help in the support thread at
https://forum.odroid.com/viewtopic.php?
f=172&t=35311&p=258763#p258763.

https://forum.odroid.com/viewtopic.php?f=172&t=35311&p=258763#p258763

