

Five-Minute Fun with your Monku R1: A Sega Genesis Handheld SD
Card

@ September 1,2019

Now that you have your cool new retro gaming console all set up and you're enjoying
playing some retro games, let's take a moment to think about what else we can do

with our ODROID device. You'll need a Monku Retro device, like the one we show you how to 3

famous 3

Linux Gaming: PC-Engine / TurboGrafx - Part 6

O September 1, 2019

With this article, we've reached the end of the PC-Engine / Turbografx series, which |
admit went on much longer than | anticipated. It also was a lot more interesting than |
thought it would be. Let's see what this final installment will bring, and if the series of

GO-Tank, Go! - Control a Treaded Bot with Your ODROID-GO

© September 1,2019
Using an ODROID-GO handheld gaming system for controlling a couple of small DC

motors that are housed inside a treaded tank robot is easier than you may think. This
chore is even more remarkable when you learn that only two of the GO’s general

purpose input/output (GPIO) pins are used 3

O

CoreELEC: For the ODROID-N2

® September 1,2019
Kodi has for years been one of the most popular media players and is often

recommended when people ask for which multimedia solution to choose as it is
available for multiple operating systems and a huge spectrum of devices. The majority

of low-cost devices which are bought for the purpose 3

How to Build a Monku Retro Gaming Console - Part 3: Adding The
Final Touches

® September 1,2019

This is a continuation of the Retro Gaming Console article from last month, where we
learned how to configure the software for a retro gaming console.

ODROID-N2 Composite Video Connection: Use Your Legacy Monitor
With Hardkernel’s Most Powerful Computer

O September 1, 2019

Composite video is an analog video transmission that was popular before the age of
digital television, the ODROID-N2 supports this video feature.

The G Spot: Your Goto Destination for all Things That are Android
Gaming

O September 1, 2019

The biggest game news for August has to be the July 29 release of Gigantic X for
Android.

containers.

ODROID-N2 Review

O September 1, 2019

The ODROID-N2 has a huge potential and is the most powerful ARM SBC | have ever
seen. It suits many use cases, ranging from a home/mini server to a full-featured
media center or desktop computer running almost any workload either installed or in

Five Minute Fun with your Monku R1: SD Card Partition Resizing

O September 1,2019

This tutorial will show you how to adjust the partitions on an SD card made from an
image of a smaller sized SD card. For example, you have a fresh new 32GB SD card
ready for your Monku1000 / ODROID-GO.

Manage your kid's computer time with mqttNanny

O September 1,2019

In my last article | was setting up my ODROID-H2 as a first computer (running Linux)
for my 7 year old son. As you know, with great power comes great responsibility, so
this means | have to be able to enforce some limits on computer time.

A Powerful Multiboot Image for the ODROID-C2: Run Android,
Ubuntu MATE, and LibreELEC From A Single Boot Device

© September 1,2019

| started this journey with a Raspberry Pi 2 device and a bootloader called: “Berryboot”
(I am not its developer) that actually is still active and supported by the Raspberry Pi

community. Then | heard about this amazing device called ODROID-C2 more powerful than a Raspberry Pi 2

device and 3

Five-Minute Fun with your Monku R1: A Sega Genesis Handheld

SD Card

@ September 1,2019 & By Brian Ree (= Gaming, ODROID-C1+, ODROID-C2, ODROID-XU4, Tinkering

Now that you have your cool new retro gaming
console all set up and you're enjoying playing some
retro games, let's take a moment to think about what
else we can do with our ODROID device. You'll need a
Monku Retro device, like the one we show you how to
build here (R1, R2), and here (R3). You can use it to
create an expansion SD card for the AtGames line of
Sega Genesis handheld devices. We'll show you how
to prepare the SD card, which can only be done on a
Linux based system, aka, your ODROID. This is
actually pretty cool. The device isn't as awesome as an
ODROID-GO but it does play Sega Genesis games very
well and it has support for extending the game list
with your own ROMs. Get your ODROID device ready
and let's start the tutorial.

Tools Needed

= A Monku Retro 1, 2, 3/ ODROID-C1+, ODROID-C2,
ODROID-XUA4. It is expected these devices are

configured with Ubuntu and MATE. Click here for R1
and R2 devices, and here for R3 devices.

= One AtGames Sega Genesis Handheld - $53.99
= One 8GB or greater Micro SD Card - $8.00
= SD card to USB Converter - $9.99

The SD Card

As it so happens, you can't use a Mac or a Windows
machine to create a properly supported SD card for
the AtGames series of Sega Genesis handhelds. It also
just so happens that your ODROID device running
Ubuntu is one of the only devices that can create a
properly working one. Get the tools you'll need ready.
I've laid out those that we'll need for this tutorial
below.

http://middlemind.net/tutorials/odroid_go/mr1_build.html
http://middlemind.net/tutorials/odroid_go/mr3_build.html
https://www.hardkernel.com/shop/odroid-go/
https://www.hardkernel.com/shop/odroid-c1/
https://www.hardkernel.com/shop/odroid-c2/
https://www.hardkernel.com/shop/odroid-xu4-special-price/
http://middlemind.net/tutorials/odroid_go/mr1_build.html
http://middlemind.net/tutorials/odroid_go/mr3_build.html
https://www.target.com/p/sega-genesis-ultimate-portable-game-player/-/A-51236578
https://www.hardkernel.com/shop/8gb-microsd-uhs-1-c2-android/
https://www.amazon.com/UGREEN-Reader-Memory-Windows-Simultaneously/dp/B01EFPX9XA/ref=pd_rhf_ee_s_cr_simh_0_2/134-7644849-0679633?_encoding=UTF8&pd_rd_i=B01EFPX9XA&pd_rd_r=21f94478-4fc9-4f19-91b5-fcddcb9a847e&pd_rd_w=Q5D9T&pd_rd_wg=qdP6K&pf_rd_p=31caee8f-ce20-49ad-9f29-d71df297ad52&pf_rd_r=KA3VQRGQ7W08X3TX9S6W&psc=1&refRID=KA3VQRGQ7W08X3TX9S6W

Figure 1 - All the tools you'll need for this project

For this little project we'll need an AtGames Sega
Genesis handheld with an SD card expansion slot,
depicted below. We'll also need an SD card of some
kind. Here we are using a micro SD card with SD card
adapter. An SD card reader will also be required. Here
we are using a dual SD/micro SD card to USB reader.

Figure 2 - Dual SD/micro SD card to USB reader

Get a copy of your Sega Genesis ROM collection. You'll
need to make some changes to the way the files are
named. The game ROMs should be copied into a
folder on the root of the prepared SD card named
Game. The game ROMs should have a .bin file
extension and should be named camelCase with any
non alphanumeric characters and spaces removed.

Figure 3 - Files should be camelCase with spaces and
special characters removed

Plug your SD card and SD card reader into your
ODROID device. If the SD card as a recognized file
system, you should see a new icon appear on the
desktop. Ignore it for now. If you don't have GParted
installed, please run the following commands. Open

the mate terminal at this menu location: Applications
-> System Tools -> MATE Terminal.

$ sudo apt-get install gparted -y

Next, run GParted. Open this menu location: System -
> Administration -> GParted. An application like the
one depicted below should appear. If you are
prompted for a password, enter the default root
password, odroid, or the password you are using.

Figure 4 - Enter your credentials

Select your SD card from the drop down list in the top
right-hand corner of the application window. Double
check to make sure you are referencing the new SD
card and not the one the ODROID is running off.
Right-click on any partitions that you see listed for the
SD card and select Unmount. Right-click again and
select delete. Do this until no partitions are available--
only unallocated space.

Create a new primary partition with the settings
depicted in the screenshot below. Set the following
options.

Free Space Preceding: 1
New Size: maximum available
Free Space Following: O

Align To: MiB
File System: Fat32
Create As: Primary Partition

Label: S GEN HH

Figure 5 - Use these settings to create your partition

GParted has logged the changes we're planning to
make to the partitions on the new SD card, but hasn't
done anything yet. In order to execute the steps we've
outlined, you must click the ‘Apply All Operations’
green checkbox at the top of the window, as depicted
below. The steps will be executed and we'll end up
with a single unmounted partition with the settings
listed above.

Figure 6 - Apply all operations

Wait for the process to complete, then click the Close
button. Close GParted, then disconnect and reconnect
the SD card to get it to mount again cleanly. You can
now copy the ROMs into the Game directory on the
SD card you just created.

Pop the SD card into your device and turn it on. Select
the SD Card option from the built-in menu system: it'll
be on the last menu screen. Once you've selected it,
you should see a ‘Searching For Games... message.

You can now play any Sega Genesis ROM on your
AtGames Sega Genesis handheld device thanks to
your ODROID. Enjoy the fun!

Figure 7 - Select SD card then wait while the system
searches for games

Linux Gaming: PC-Engine / TurboGrafx - Part 6

@ September 1,2019 & By Tobias Schaaf &= Gaming

With this article, we've reached the end of the PC-
Engine / Turbografx series, which | admit went on
much longer than | anticipated. It also was a lot more
interesting than | thought it would be. Let's see what
this final installment will bring, and if the series of
famous shooters will continue here as well, or if there
are yet some surprises left to discover.

Games | liked

Valis Series

Figure 1 - Recap of Valis | of part 4 of this series

Figure 2 - Good graphics and very nice gameplay overall

Valis is a series of action platformers where you play
as a young school girl with a magical sword that can
fight off daemons. The first part | already covered in
part 4 of this series under the name “Mugen Senshi
Valis - Legend of a Fantasm Soldier”. It's a remake of
the original Valis game which came out first for the
MSX and NES. The PC Engine port was a remake with
highly improved graphics and anime cut-scenes.
Although it's the first in the series, it's the last that was
released for the PC Engine in 1992. The first to be
released on the PC Engine was Valis Il in 1989.

Valis Il is very similar in gameplay as Mugen Senshi
Valis - Legend of a Fantasm Soldier, but with some
small differences. You can not slide as you can in the
original Valis, and the weapons you collect are shown
as icons. You magic can be activated by simply
pressing the “up” key which can lead to some
accidental activation over time. There is no magic
point (MP) meter for your magic that decides how
often you can use your magic and that you can refill.
Instead, you collect items that allow you a certain
number of uses of that particular skill. Besides that,
it's still slice and dice as well as jump and run. The
graphics are not that good, there is no parallax
scrolling in the game, and videos have very limited
animations. They also have an ugly green border
which was removed in later installments of the series.
The game was completely dubbed in English which
sounds quite cliche, but helps you understand the
overall story.

Figure 3 - The green border in cut-scenes was removed in
later parts of the series

Figure 4 - Bosses are rather easy

Valis lll came out in 1990 for the PC Engine (and 1992
for Turbo Graphics). It improves over the Valis Il in
many ways. Gone is the ugly border around cut-
scenes, and cut-scenes are actually rendered a lot
bigger now with many more animations going on. The
overall graphics improved as well.

Figure 5 - Overall improved graphics in Valis Il

Figure 6 - Bosses are a little harder this time but still no
real challenge

Back is the MP bar which can be filled by collecting
items. You increase the strength of your attacks by
increasing the length of your sword meter: the more
the meter is filled before you do an attack, the more
damage you do. You do no longer have different
sword styles but instead can switch between different
characters. Which have different attacks and attack-
styles. You can switch between characters anytime
within the game, except for boss fights where you
have to keep the one with whom you entered the
fight.

Back is also the sliding now on the “START” button
while pressing down. Magic can be cast by hitting up
AND the attack button rather than only up. Overall
the game is a lot better than the second part in many
ways. It llacks the parallax scrolling of the Mega Drive

version of the game, but offers CD quality music
instead.

Valis IV improves a little bit over Valis Il im that you
actually do have a little bit of parallax scrolling here
and there. Released in 1991 (one year before the Valis
| remake), it's only available in Japanese. This time you
play different characters though and you can switch
between three different characters within the game
(similar to Valis Ill). This time, though, this is needed to
solve some puzzles, as only one of the characters can
do a double jump in order to reach higher or further
away places.

Figure 7 - More of the same in Valis IV it looks very
similar to Valis 11l gameplay wise

Figure 8 - Bosses are fun and slightly more challenging
this time

Magic is gone completely this time, and is replaced by
a three-staged special attack for each character. Each
Stage requires a certain amount of energy in your WP

bar which is filled automatically as long as you don't
use it or get hit. Each stage has a different attack, and
the third stage is a screen filling attack that does a lot
of damage. Using it will decrease your overall WP
meter to level 2, and you have to collect an item first
to enlarge it to level 3 again. You don't lose anything if
you use Level 1 or 2 though.

All of the games in the series are fun to play, and | can
highly like
platformers. With the second and third games being

recommend them if you action
in English, it's easy to follow the story for a while and

enjoy the animated cut-scenes.

Wonderboy 3 - Monster Lair

This is a port of the classic arcade game to the PC
Engine. There's nothing much to say if you know the
arcade game. You get a very good copy of it with
improved CD sounds and that's about it.

Figure 9 - Wonderful bright colors and comic like
graphics

Figure 10 - Second stage of each level flying and boss
fighting

If you don't know this game, it is an arcade action
platformer designed to eat your coins. The screen is
constantly scrolling to the right, and you have to move
forward to avoid being dragged along. The green life
bar is also a time bar that reduces slowly over time,
but can be replenished by collecting fruits and items.
You can collect a couple of different weapons which,
for a short time, will aid you in your quest. The game
is fun, the music is good, and it's a very nice port of
the game.

Zero Wing

Figure 11 - Zero Wing for the PC Engine

Figure 12 - Bosses can be huge and cause flicker

This shooter is not particularly impressive. It's just the
overall vibe with good graphics (but not impressive),
nice gameplay, and fitting music. The game is good,
not perfect, but it's fun to play. The graphics lack good
parallax scrolling, but you get a lot of big enemies and
challenging situations without it being unfair. There
are even some situations where you have to guide
your space craft through very tight spaces, which
worked perfectly fine, and | haven't had trouble like in
some other games. Bosses are huge, and it's fun to
find patterns to beat them.

You can collect three different weapon types
represented by either the color red, blue, or green.
The first is your standard pea shooter (vulcan cannon)
in red, which fans out over time if you upgrade it and
covers a lot of the screen. Blue is for a laser beam
type of weapon, which goes straight forward and
does a lot of damage. It is probably best for killing
large enemies and bosses as it does the most damage
over time. The last is green, which are self aiming
shots that fly automatically to an enemy on the
screen. Each of the weapons can be upgraded if you
collect items of the same color. If you switch colors,
you switch weapons, but do not increase or decrease
the weapons power. There are also some other power
ups that allow you to fly faster, for example, or will
give you a bomb that you can throw at enemies,
which does massive damage in a large radius over
time.

You also have the ability to “capture” enemies and use
them as a shield or throw them at other enemies.,

which is fun for a while, but | dropped that after a
time. There are certainly better shooters out there for
the PC Engine, but | really liked the simplicity of the
style and gameplay.

Games | found ok

Tenchi wo Kurau (aka Dynasty Wars)

The fighting game with RPG elements is actually quite

nice. You collect certain items to level up your
character and get more HP, and you can collect a few
weapons from enemies you killed to increase your
overall strength a little. You can charge your attack to
do extra damage and fight a bunch of bosses at the
end of the level. Overall it is a rather good game.
Graphically, it is not as good as the arcade version,

but is very satisfying and not bad gameplay wise.
Tengai Makyo - Kabuki Itouryodan

This Street Fighter-style game offers 8 different
characters to choose from. It's actually quite good for
the PC Engine and supports 6-button joysticks.
However, it's entirely in Japanese, and even the
menus are hard to figure out. It also has a rather long
loading time between levels compared to other
games. Still, if you like Street Fighter like games you
should definitely try this one as it's one of the best of
this genre for the PC Engine.

Tengai Makyou - Deden no Den

This is essentially Bomberman with a different
graphics set, and there is nothing particularly good or
bad about it.

The TV Show

I'm not sure if | like or dislike this game. You can
choose between 8 different characters, each one with
a silly background story, which shows them messing
up, and then you go to something called “The TV
Show”. This is a mixture of a puzzle and a fighting
game. You can set different types of bombs, and
some will kill or destroy objects nearby, while others
will destroy entire floors underneath them. Your goal
is to break certain objects (without dropping them in
the endless pit underneath) to get what's inside. The
reward is mostly diamonds to increase your wealth
which you need to “continue” when you die or mess
up. It's interesting, if only for a little while.

Uchuu Senkan Yamato (aka Space Battleship
Yamato)

This game plays like an interactive animation film. You
are the commander of the space battleship Yamato.
For this, you can command different stations of your
battleship and order them on tasks like shooting at
enemies, sending fighter/bombers after them,
determining where you want to concentrate your
repairs, and setting the direction you want to fly and
how quickly. Things like this, combined with decent
graphics and sounds/music, make this game great,
yet the game is completely in Japanese and | have a
hard time understanding what I'm supposed to do. It's
easy enough to figure out the controls, but mission
objectives are a different topic. It's a shame, as |
would love to play this game in a language |
understand. It's a very unique concept of a game and |

very much enjoy playing it.

Vasteel

This game is a mixed bag. The animation is lengthy,
with a fully English-voiced intro and fights, which is
quite nice, with a good amount of detail. The
gameplay itself is a little bit different though. It's a
tactical game similar to Advanced Wars for the
Gameboy Advance, History Line 1914-1918, or Battle
Isle. You command single units of an army, build new
ones (as long as you have the funds), and send them
toward enemy units and cities. Destroy the energy
plant of a city, and you take it over, which in return
gives you more funds. The goal is to eradicate the
enemy main building and thereby win the map.

This sounds easy, but it can take many hours just to
win a single map, with you constantly trying to
capture and hold the same cities. A little different is
the fact that you can control your units when it comes
to a fight. Most of the time, your units have a fast but
very ineffective gun and bigger gun that takes a long
time to shoot, or is slow. You can try to avoid enemy
shots and try to hit the enemy yourself. It's not bad,
but as | mentioned, a single level can take many,
repetitive. It's
completely in English though, so if you like these kind

many hours and becomes very

of games, there should be nothing stopping you.

Vasteel 2

Although completely in Japanese, | found this game
easier than its predecessor. It also uses the Arcade
card, which means extra memory for animations,
which you can see very well in the introduction.
Overall this time, it feels more like you follow a
storyline, unlike the previous game where you had a
story and then just a map. This time you have mission
objectives. You don't need to destroy an enemy main
building, but often have to destroy all enemies on
screen. It's fun, but still takes quite some time,
although by far it is not as lengthy as the first game.

Where in the World is Carmen Sandiego

This puzzle game is nothing special. You travel around
the world to collect clues about a crime suspect by
following the hints of the people who have seen him.
Create an arrest warrant when you have enough
details about the person, then travel until you find the
person. It's fun for a little while to figure out the
different clues, but the text scrolls rather slowly, and
graphically it's not even worth mentioning. Overall. it's
very average; not bad, but not good either.

World Heroes I

This Street Fighter 2 like game was very surprising for
me. The graphics quality and animations are superb!
You even see animations in the background of the
stage like you have on “big consoles”. so | was really
surprised to see that level of animation. Yet, the
gameplay was extremely hard in my opinion (or |
must be really bad). It was already extremely hard to
beat the first enemy, although the game was set on
“easy” mode. It's a shame, since | enjoyed the game
and graphics especially, but the game was way too
hard for me to enjoy completely.

Xak 11l - The Eternal Recurrence

This RPG game was fully translated by some
enthusiasts and can therefore be played in English,
which is quite nice. The game itself is not bad, with an
action RPG style similar to the Ys games (described
below). You walk around and can slash at enemies
and jump to overcome obstacles. Sometimes there
are hidden switches behind coffins or a bookshelf,
which can be moved. Boss fights can be long and
rather hard. and while at any other time in the game
standing around will heal you, in a boss fight this is

disabled. The game and story is not bad, and the
music is rather good, yet the graphics are very
outdated. You can charge your attack and do either a
magical ranged attack (a fireball) or build a stronger
slash for extra damage. Sadly, controls are not all that
good when trying to do this, and you often end up
facing in a different direction than you intended to.

Ys Series

Although this is one of the few good and also few
English RPG games for the system, | prefer playing it
on other consoles such as the PSP, where the
graphics are much better than on the PC Engine. Ys
Book 1, 2, and 3 are available completely in English,
with part 3 being the only one where you can jump
and attack with a button. Part 4 goes back to the
roots, and you start bumping into things again. It is in
Japanese only, but there is a fan translation out there
which at least translated all the texts, but not the
audio. Overall, | think this series got better over time,
and with it different ports to other systems, and as |
said, | prefer playing it using a PSP emulator on
ODROIDs.

Yu Yu Hakusho - Anshoubu!! Ankoku Bujutsukai

The graphics in this game are impressive both in the
animated intro as well as in game, but it also feels just
like an arcade shooter where you point your gun and
shoot at an animated scene, and that's basically what
it is. You aim at the enemy's head or other weak
spots, such as when he's running left and jumps right,
and you try to repeatedly hit him before he hits you
too often. The graphics are very impressive, and the
animation is really good, but the gameplay quickly
gets repetitive.

Games | disliked

Travel Epuru

This game might look cute at the start but, but it really
isn't all that cute. There are two little children that
fight each other with bombs, grenades, sticks, and
even magic. The goal is to knock out the other kid.
The main focus is a boy and a girl fighting in silly
penguin costumes. It's neither a “cute” scenario nor is
the gameplay anything interesting.

Conclusion

| was a little bit disappointed of the last part of the PC
Engine / Turbografx series, since | guess that | was
used to many impressive games while writing the
other parts, and it took quite a while until the last part
of the series brought forth some gems of its own.

It's been a long time since | started this series, and |
have to admit | did not expect it to take that long, nor
that | would enjoy it that much. The PC Engine,
especially the CD version, had some awesome games,
and considering the hardware that was behind the
Genesis / Sega CD and the SNES, it held up really well
compared to these consoles, if you also keep in mind
that the console was the first to utilize the CD format
years before the Sega CD. It's quite impressive what
you could do with that console. | found plenty of
games that | enjoyed immensely on the system, and
with the recent port of PC Engine to the ODROID Go
from @pelle7 | have even more awesome games that
| can play on the go that | find far more impressive
than, for example, some simple NES games.

In my opinion the PC Engine was really an underrated
system. It was very advanced for its time, and | wished
| could have played it “back in the day”. However,
there are some downsides as well. The game was
focused on the Japanese market and has a lack of
good RPG games which | like, and other genres are
also sparsely represented on this system. | might have
not mentioned it previously, but | often played many
many Japanese games as well, and | have to admit
that it's a shame that | do not understand these
games, as some of them are simply amazing and far
beyond what other games had to offer for the
platform.

A special example of this is the game "Private Eye
Dol", which is an adventure game with lots of walking,
searching, talking to people, interacting with objects,
and so on. The game is simply amazing quality wise,
since it utilized the extra memory of the Arcade Card
for the system. There are many animations, many cut-
scenes that are fully voiced, and overall the graphics
and presentation is simply amazing and looks more
like an SNES game than a PC Engine game. | just
wished | could play this game in a language that |
could understand.

nother example is "Seiya Monogatari - Anearth
Fantasy Stories", which is an RPG game that looks
more like it's from the SNES or a more powerful
machine. The introduction is very detailed, and the
overall game graphics look like they are from a more
powerful console, paired with an incredible
soundtrack. These are the games that I'm really

missing out on due to the language barrier.

There are a lot more impressive games such as
Snatcher, which fortunately also came out for the

Sega CD two years after it was released for the PC
Engine, but with some minor censorship compared to
the PC Engine version. There are even more games
that are really impressive for the console but are only
available in Japanese. They show perfectly how far the
hardware could have been pushed and what it was
capable of doing. Overall, | was very impressed with
the system, especially considering how old it is, and
what things we now take for granted in more modern
systems.

GO-Tank, Go! - Control a Treaded Bot with Your ODROID-GO

@ September 1,2019 & By Dave Prochnow [Linux, ODROID-GO, Tutorial

Using an ODROID-GO handheld gaming system for
controlling a couple of small DC motors that are
housed inside a treaded tank robot is easier than you
may think. This chore is even more remarkable when
you learn that only two of the GO’s general purpose
input/output (GPIO) pins are used for this task.

Figure 1. Take your ODROID-GO on the road with this
tank bot.

Generally speaking, a “typical” control interface for a
DC motor consists of five separate and independent
lines: the obvious power/control lines, such as 5V or
GND, and three logic inputs from a robot controller
(e.g., an input for forward, one input for backward
movement, and a final logic line for controlling the
motor’'s speed). Sharp-eyed readers, however, will
notice that only two lines actually connect to the
motor. Those other three lines configure a motor
controller for “driving” these two connected power
lines (i.e., change polarity and drive a series of pulses
to the motor via a pulse width modulated (PWM)
signal). How is this possible?

The “secret sauce” for this whole operation is a small
circuit that resides between the robot controller and
the DC motor. This circuit can be variously referred to
as a “motor driver,” “H-Bridge,” or “motor controller,”
but its function is to operate the motor in accordance
with the commands sent from the robot controller.

In our case, the ODROID-GO is the robot's controller.
A Devastator Tank Mobile Platform from DFRobot is
our treaded tank bot. A small transistor switch circuit
is our motor driver, this is NOT an H-Bridge circuit,
however, it's a simple power switch. Furthermore,
only two GPIO pins will be used for driving our tank
bot: GPIO #4 and GPIO #15. We will, however, also
need to use the GND pin #1 and the 3.3V pin #6 from
the ODROID-GO GPIO header interface. These power
pins DO NOT drive the robot. Rather, these pins are
used for helping the ODROID-GO *“talk” with our
transistor-based motor driver circuit.

Figure 2. Slide to the left - turn right.

Figure 3. Slide to the right - turn left.

Figure 4. Now cha-cha all about, ya’ll - drive forward.

And the best part of GO-Tank is that your WiFi-
enabled smart device will be used for steering the
tank bot.

Parts

= DFRobot Devastator Tank Mobile Platform #ROB0128
$84.90 (mouser.com)

= Hardkernel Level Shifter: 5V to 3.3V $1
(hardkernel.com or ameridroid.com)

= Hardkernel Step Up DC-DC $1.50 (hardkernel.com or
ameridroid.com)

= 2x 2N3904 NPN Transistor $1.28 (bgmicro.com)
= 2x 1N4001 Diode $0.04 (bgmicro.com)
= 2x 330-ohm Resistor $5.23 (bgmicro.com)

= Batteries, breadboards, wire

Step-By-Step

1. Out of the box, | didn't think that the Devastator
tank looked like a proper tank. Therefore, | created a
pair of new lower hull side panels. These new panels
enabled me to move the drive sprockets and motors
to the rear of the robot.

http://www.mouser.com/
https://www.hardkernel.com/
https://www.ameridroid.com/
https://www.hardkernel.com/
https://www.ameridroid.com/
https://www.bgmicro.com/
https://www.bgmicro.com/
https://www.bgmicro.com/

Figure 5. This is what a proper tank should look like -
rear-wheel sprocket drive.

2. Follow the circuit design for the ODROID Ultrasonic
Distance Meter wiki. This arrangement will allow the
3.3V GPIO pins on the ODROID-GO to control the 5V-
powered transistorized power switch motor controls.
In this case, the Step Up is used for powering the
Level Shifter and NOT for powering the motors.

Figure 6. The level shifting and voltage boost circuit for
driving the motor power switches and NOT the robot
motors.

3. Wire two transistorized power switch motor
controllers following the layout of this breadboard
diagram (Figure 7) and photograph (Figure 7a):

Figure 7. Using a breadboard is a great way to create the
circuits necessary for controlling this robot.

Figure 7a. This is an elegant solution for adding a simple
ON/OFF control to a DC motor.

4. Connect one of the motor controller outputs to one
of the DC motors power lugs. Repeat for the other
motor controller and connect it to the second DC
motor. Connect a ground (GND; black) wire to the
other, unconnected lug on each motor.

Figure 8. The GPIO connections from the ODROID-GO.

Figure 9. Follow the GPIO connections to the motor
controller. Only one of the two motor controllers is
shown in this figure.

5. Wire the Devastator battery pack to both of the

void goFORWARD () {
lcd.setTextFont (4) ;

lcd.setTextSize (2);
lcd.setCharCursor (2, 5);
lcd.setTextColor (PURPLE, BLACK) ;
lcd.println ("Come Back,");
lcd.setTextSize (3);
lcd.setCharCursor (2, 7);:
lcd.println("Shane!™);
digitalWrite (PIN MOTOR RIGHT, HIGH);
digitalWrite (PINiMOTORiLEFT, HIGH) ;
delay (2000) ;
digitalWrite (PIN MOTOR RIGHT, LOW);
digitalWrite (PIN MOTOR LEFT, LOW) ;

7. Place the Devastator robot on top of a small box for

motor controllers (i.e., shown by the red and black testing its operation.

GND wires in Figure 8). When a command is sent by
one of the ODROID-GO GPIO pins, the transistors in
these motor controllers will toggle the power from
the battery pack directly into each motor. Sweet!

6. Program the ODROID-GO with code similar to these
snippets:

#include

#include

#define PIN MOTOR RIGHT 15
#define PIN MOTOR LEFT 4

const char *apSSID = "ODROID_GO AP";
const char *apPWD = "12345678";

WiFiServer server (80);

ILI9341 lcd = ILIO9341();
void setup ()
{
IPAddress gateway (192,
IPAddress subnet (255,

168, 4,
255, 255,

1);
0);

--snip--

Insert WiFi AP setup, LCD setup, and

configure Web interface
Then add functions for defining left, right,

forward movements like this:

After switching on the ODROID-GO, connect your
smart device to the ODROID-GO WiFi access point
created inside the program’s code, and use your
browser to load the code-generated Web page at:
http://192.168.4.1. By pressing “LEFT" on this Web
page, you should see a red display on the ODROID-GO
and the left tread should move, this action will turn
the tank right. Pressing “RIGHT” turns the display
green and moves the tank left, while pressing forward
runs both treads and drives the tank ahead.

Figure 10. The robot’s control interface on your smart
device.

Now get out there and enjoy your newfound freedom
with a mobile ODROID-GO-Tank.

Notes
1. ALL ground (GND) lines must be connected together—
regardless of voltages!

2. Why Shane? Read the 1949 Jack Schaefer classic
Western novel, or watch the 1953 film adaptation

starring Alan Ladd and wait for little Joey's plaintive
cry at the departing gunslinger.

CoreELEC: For the ODROID-N2

@ September 1,2019 & By @CI6NOz &= ODROID-N2

Kodi has for years been one of the most popular
media players and is often recommended when
people ask for which multimedia solution to choose
as it is available for multiple operating systems and a
huge spectrum of devices. The majority of low-cost
devices which are bought for the purpose of
multimedia playback are equipped with an Android
operating system where Kodi is often preinstalled or
can easily be installed. Given that Android and Kodi
are so widely used, one would think that combining
them would be the ultimate multimedia experience.
That's not really the case and the experience can be
somewhat mediocre when playback stutters and
other problems occur. Fortunately, there are multiple
alternatives to Android and one of the best is
presented in this article - CoreELEC.

What is CoreELEC?

CoreELEC is a Linux distribution based on Kodi
technology with the main purpose of being as light as
possible, ideal for low-powered devices. It was forked

from the widely known LibreELEC in 2018 and
differentiated with a philosophy to make sure users
get the best possible experience with the current
status of hardware and software. With that in mind,
CoreELEC on ODROID-N2 has shown to be a strong
contender to be the best low-cost multimedia
solutions to date. And with the support of the Enware
package manager, it is capable of being a low-cost
server in addition to a multimedia solution as seen

later in this article.

Figure 1: Welcome screen

Hardware setup

Below is a list of the hardware used with some
recommendations and more information.

Recommended:

= ODROID-N2 with 2/4 GB RAM

= 12V/2A power supply

= High Speed 4K HDMI 2.0 Cable (Type A-A)
= ODROID-N2 Case

= |R Remote Controller

= Micro SD card

Optional:

8/16/32/64/128 GB eMMC Module N2
= Bluetooth Module 2

= RTC Backup Battery

WiFi Module

As | wanted to use ODROID-N2 with CoreELEC as a
home server using Entware in addition to multimedia
usage, | chose 4GB of RAM. However, it's worth noting
that 2 GB is sufficient enough for most users. The
same can be said about the eMMC module where
8/16 GB is more than enough for regular usage with
Kodi. For the rest of the options, it depends on what
you need and they all work as expected with
CoreELEC.

Installation

CoreELEC was easily installed by following the
installation guide at https://coreelec.org/. After
the flashed microSD eventually
unplugging eMMC before powering ODROID-N2 to

inserting and
make sure CoreELEC boots from the microSD card, in
less than 2 minutes, CoreELEC was ready for usage.
For increased performance, CoreELEC was installed to
eMMC by running the command “installtoemmc”
twice.

Setup of Kodi

The default settings after installation satisfy most
users needs, yet there are still some settings which
should get some additional attention. Let's start with
CoreELEC.

Figure 2: CoreELEC setting screen

Two features which are heavily used are Samba and
SSH. If enabling any of them, remember to setup or
change credentials. For Samba, “Use Samba Password
Authentication” was enabled with a strong password.
For SSH, one can either setup a new password or
simply insert a public key. SSH keys are the most
secure and the fastest solution, so copying my public
key into .ssh/authorized_keys achieved it. Lastly “SSH
Password” was disabled as it was no longer needed.

Further along on the setup-list was System, where the
two aspects Display and Audio were worth diving into.
If your TV has any issues with specific resolutions or
you want to switch to a lower resolution than your
Kodi GUI, select your TV's capable resolutions in
Whitelist. Some people might find it tempting to
change the GUI resolution to 4K instead of 1080p. The
ODROID-N2 is more than capable of running a 4K GUI,
but | want the most responsive and clean experience,
so | left the GUI at 1080p. This won't affect the
resolution of the media played and should, therefore,
only be considered if one wants higher quality
posters.

Lastly was Audio and as I'm going to use an AVR
(Audio/Video Receiver), | want my AVR to do the
decoding to get the purest audio quality. My settings
based Kodi's quickstart guide
(https://kodi.wiki/view/Audio_quickstart_guide).

were on

https://coreelec.org/
https://kodi.wiki/view/Audio_quickstart_guide

Adding media

As a Plex user, connecting all my Kodi devices to my
Plex server was done in minutes with the add-on
PlexKodiConnect
(https://github.com/croneter/PlexKodiConnect/). For
users who are not using Plex, setup the library by
following Kodi's guide for creating a video library
(https://kodi.wiki/view/HOW-
TO:Create_Video_Library).

Figure 4: Media library with Estuary Mod V2 skin)

Add-ons

The selection of add-ons has for years been one of
Kodi's advantages and people are frequently using
them, me included. Further are some add-ons that |
use frequently:

Figure 5: Add-ons

Netflix

By visiting the following link
(https://forum.kodi.tv/showthread.php?tid=329767)
for installation instructions, Netflix is ready for usage.
ODROID-N2 is powerful enough to watch Netflix in
1080p with DD+ 5.1 sound and subtitles.

Figure 6: Netflix with 1080p and DD+ 5.1

Youtube

Youtube can be installed from Kodi Add-on repository
and with the add-on InputStream Adaptive, found in
CoreELEC Add-ons, one can setup Youtube with 4K
playback.

Figure 7: Youtube in 1080p without a hassle. Same can
be said for 4K.

(Figure 7: Youtube in 1080p without a hassle. Same
can be said for 4K.)

Testing

By the
https://kodi.wiki/view/Samples, one is able to test

using samples at
most audio and video formats. The following is the
current status as of July 2019 with passthrough
enabled and ODROID-N2 connected to an AVR.

Audio Status Video Status
AC-3(DD) Working 720p and Working
lower 23-
60 Hz

https://github.com/croneter/PlexKodiConnect/
https://kodi.wiki/view/HOW-TO:Create_Video_Library
https://forum.kodi.tv/showthread.php?tid=329767
https://kodi.wiki/view/Samples

E-AC-3 Working 1080p Working
(DD+) 23-60 Hz
Dolby Working 1080p 3D Working
TrueHD HSBS/HT
AB
DTS Working 1080p Not
3D-MVC working
DTS-HD Working 2160p Working
23-60 Hz
DTS-HD Working 2160p Working
MA 23-60 Hz
HDR10
LPCM Not 2160p Working
working, 23-60 Hz
a HLG
workarou
nd is
selecting
2.0
channels
and
enabling
AC-3
transcodi
ng
FLAC Partly 2160p Not
working, 23-60Hz working
see LPCM Dolby
Vision

(Status of tested audio and video formats.)

To sum up, ODROID-N2 is more than capable of
playback of Ultra HD Blu-Ray with HDR10 and Dolby
Atmos / DTS-X. Even test samples which are 3 times
the bitrate of the specification of UHD Blu-Rays (triple-
layer - 128 Mbit) played flawlessly from a NAS.

Using ODROID-N2 with CoreELEC as a server Entware,
which is a package manager with more than 2000
packages, can be easily installed by running the script
installentware through CoreELEC. Entware packages
were initially designed to run on low-powered devices
such as routers and NAS and are, therefore, especially
lightweight. Packages are installed with opkg install
Package name and one can search for packages
with opkg search NAME or opkg find NAME. As | want
to use my ODROID-N2 as a server, some of the
commands | ran are the following:

$ opkg install lighttpd mc youtube-dl

netdata

Some highlighted packages which are installed:

= Lighttpd - An open-source web server optimized for
speed-critical environments

= GNU Midnight Commander (mc) - A visual file manager

= Youtube-dl - a program to download videos from
YouTube and many more sites

= Netdata - a daemon providing real-time performance
monitoring for Linux systems

Figure 8: Midnight Commander

Figure 9: Netdata

Support

One of the most underrated aspects concerning
buying a single board computer (SBC) is the support,
which causes the buyer to not account for the support
of the SBC when they look at the price. The support of
a SBC is extremely relevant to get the best possible
user experience and this is one of the aspects were
the ODROID-N2 shines. With great support over at
https://forum.odroid.com/
https://discourse.coreelec.org, one can ask questions
for help and are often replied to from within minutes
to a few hours. People over at the forums are eager to

and

https://forum.odroid.com/
https://discourse.coreelec.org/

help and assist, which is important for the community To read more about using CoreELEC with the
to grow and the awareness around SBCs to increase ODROID-N2, check out a review of the ODROID-N2

even further.

Figure 10: CoreELEC forums

CoreELEC Media Center at https://www.cnx-
software.com/2019/08/26/odroid-n2-coreelec-
edition-media-center/.

Editor's Note

Personally, | have an ODROID-N2 running CoreELEC
and found it to be a fast and responsive media player.
After reading this article, it will be clear to see why the
ODROID-N2 makes such a terrific media centric
device. Additionally, Hardkernel has even put together
a package with everything you need to get up and
running with CoreELEC on an N2, so you can see first
hand how amazing this device is even easier at
https://www.hardkernel.com/shop/odroid-n2-2gb-
coreelec-edition/ or, for those in the US, at
https://ameridroid.com/collections/new/products/o
droid-n2-coreelec-edition.

https://www.cnx-software.com/2019/08/26/
https://www.hardkernel.com/shop/odroid-n2-2gb-coreelec-edition/
https://ameridroid.com/collections/new/products/odroid-n2-coreelec-edition

How to Build a Monku Retro Gaming Console - Part 3: Adding

The Final Touches

@ September 1,2019 & By Brian Ree &= Gaming, Linux, ODROID-C2

This is a continuation of the Retro Gaming Console
article from last month, where we learned how to
configure the software for a retro gaming console.
This installment will show you how to finish the
project by showing you, in detail, how to polish off
your Monku Retro 1 (ODROID-C1+) or Monku Retro 2
(ODROID-C2) video game console. We'll be optimizing
the MATE Linux desktop environment, connecting our
custom control button, setting up RetroArch in kiosk
mode, and boot.ini configuration.

Tools and Parts

This tutorial doesn't require any new parts or tools.
We'll be configuring the console you've already built,
adjusting things to really make it shine.

Introduction and Tutorial Goals

Finalizing MATE...Almost

In this section, the first thing we're going to do is get
rid of that pesky authentication prompt that pops up
when you open a browser for the first time after
logging in. ALERT: This is not a high security setup: we
are purposely lowering the security level here to make
it easier to use as a game console and web browsing
set top box. Go to the following menu location:
Applications -> Accessories -> Passwords and Keys
and you should see a window popup similar to the
one depicted below. ALERT: If at any time you are
prompted for a login when working with the terminal
use the password, odroid.

Figure 1 - Configuring your settings to remove the
authentication prompt

Locate the Login entry in the list on the left-hand side
of the window. If the authentication popup |
mentioned references a different Password keychain
then find that entry in the list on the left-hand side of
the window. Follow the steps below to unlock the
target keychain.

1. Right-click on the target entry and select Change
Password.

2. You will be prompted to enter the old password: type
in odroid and click Continue.

3. You will now be prompted to enter a new password:
leave both fields blank and click Continue.

4. Another dialog will popup and ask you if it's ok to allow
the keychain to be unlocked: click Continue.

5. Close out of all the dialogs and close the Password and
Keys window; we're all set.

Next thing we'll do with the MATE environment is
configure the panels and widgets a bit. You can do
whatever you like here. I'll just show you how |
configure things and why. First off, we're expecting to
interface with this system, at least some of the time,
with a gamepad. It works great, but it's not a mouse.
We're not really going to be doing any rigorous Linux
computing so there are a few things we don't need.
The second benefit to this configuration step is that is
does lower the memory overhead a little.

Follow these instructions to remove the bottom
panel. We will be adding controls to the top panel to
offset some of the functionality loss, but we won't be
adding in the desktop selection widget. It's just a bit of
overkill for our needs. If you want it, however, it won't
harm anything to keep it. Follow these instructions to
clean up the panels and widgets.

1. Go to the bottom panel and right-click, select Delete
This Panel, then click Delete again when prompted.

2. Go to the top right-hand side of the screen and right-
click the power button, select Remove From Panel.

What we're going to do is re-add some of the widgets,
making the top panel a more centralized point of
control. This makes using the gamepad to control
things much much easier. Your desktop should look
like the screenshot below.

Figure 2 - Your new, more centralized top panel

Since we got rid of our open window selection
buttons when we deleted the bottom panel, let's add
a new widget to the top panel that is better suited for
a gamepad since it requires less cursor movement to
utilize. Right-click on the top panel and select Add to
Panel. Scroll down the list of options until you see the
entry depicted below and then click Add.

Figure 3 - List of panel options

We have a few more steps to get through here
regarding the tray apps and the date and time

configuration but we're almost done.

Next let's click on the Date and Time string in the top
right corner. A calendar drop down should appear.
Expand the Locations section and click the Edit
button. Configure the General tab as depicted below
or as you see fit.

Figure 4 - One possible configuration option

Let's add some location information so the time will
be correct when we have an internet connection and
sync with network time protocol (NTP). Click on the
Locations tab then click the Add button.

Start typing the nearest major city into the Location
Name text box. If that doesn't work, try another major
city or the city representative of your time zone (e.g.
mine is New York). Select a location from the list that
pops up. Click Ok once you've found something
suitable. Now you will see a location entry in the
locations list as depicted below.

Figure 5 - Your location added to the locations list

There are just a few more things left to do here. Right-
click the battery icon in the top right tray. Select the
Preferences option. Click on the General tab and
toggle Never Display An Icon. If you have an EN or UK
string in the system tray, right-click on it and select
Preferences. On the General tab, uncheck Show Icon
On System Tray. We won't really worry about

switching the keyboard language. If you need this, you
can turn both system tray icon back on by using the
System -> Control Center menu option and clicking on
Power Management and iBus Preferences
respectively. The screenshots below show the forms

we just discussed.

Figure 6 and 7 - Select your preferences

Figure 6 and 7 - Select your preferences

There are just two little things left in this section, then
we'll be moving onto the custom control button and
scripts! Move the mouse to the top panel and right-
click. Select Add to Panel, then scroll down until you
see the Show Desktop option as shown below. Do the
same thing for the Trash option.

Figure 8 - Show desktop

Use the center mouse button, or the mouse wheel, to
move the widget icons on the top panel. Let's drag

these two new widgets a little closer to the System
menu, and separate them a little bit. Now we're ready
to start adding custom scripts. These scripts will
automatically start RetroArch on boot, and start
AntiMicro when RetroArch closes, returning mouse
control to the gamepad. We'll also set up some magic
with the custom control button.

Scripts and Custom Control Button

In this section, we're going to set up some custom
scripts to control the software we installed and
configured. This will bring the experience up from a
Linux desktop experience to more of a game console
experience. Download the script bundle for your
device below and then copy and paste it into the
install_zips folder you created in the second tutorial. It
is located in the ODROID user's home directory.

= Monku R1/ C1+ Scripts
= Monku R2/ C2 Scripts

Once you have downloaded and copied the zip file
into the install_zips folder, right-click and select
Extract Here. Eleven files should appear in a sub-
directory. Open it and copy them all into the ODROID
user's home directory. The ODROID user's home
directory is the default location of the file browser.
You can also access it from a link on the desktop, or
from the left-hand side of the file browser where the
folder shortcuts are listed.

Let's make sure these scripts have the correct
permissions and can be executed. Open up a
terminal, Applications -> System Tools -> MATE
Terminal, and run the following commands.

$ sudo chmod 755 power btn power btn test
pwrbuttonsvc.service restart now
shutdown now start am start antimicro

start auto start pwr start ra stop auto

$ sudo chmod +x power btn power btn test
pwrbuttonsvc.service restart now
shutdown now start am start antimicro

start auto start pwr start ra stop auto

Now close the terminal and go to System -> Control
Center in the menus. Find and select the Startup

Applications option. You should see something similar
to what's depicted below.

Figure 9 - System control center

Click the Add button and fill out the form as depicted
below. I'll put the exact text here also.

Name: Start RetroArch Path: /home/odroid/start_ra
Description: Launches RetroArch on startup.

Now, we also want to start a special AntiMicro script.
So let's do the same thing for that script, also shown
below. Again I'll list the values used here.

Name: Start AntiMicro Path: /home/odroid/start_am
Description: Launches AntiMicro on startup.

Figure 10 - Start RetroArch

Figure 11 - Start AntiMicro

Shutdown the device: System -> Shut Down. Use the
hardware reset button to turn it back on. You should
see RetroArch launch automatically. Now, if you close

http://middlemind.com/images/products/monku_r1_build/monku_r1_scripts.zip
http://middlemind.com/images/products/monku_r1_build/monku_r2_scripts.zip

RetroArch and wait about 5 seconds, you should see
AntiMicro popup into the system tray and restore
gamepad control of the device.

Things are shaping up nicely now. Our beautiful
ODROID is looking more and more like a great retro
gaming console. Let's finally add custom control
button support. Before we plug it into the system we
should test it. Go to the terminal: Applications ->
System Tools -> MATE Terminal and type sudo
/power_btn_test then hit enter. You may get a GPIO
pin export error if you run it twice in a row. You can
ignore this; the test will still work. You should see a
series of 1's scroll across the terminal if you are using
a C2, zero's for a C1+. Hold down the custom control
button and see what happens. Make sure you don't
hit the hardware reset button by accident or else
you'll have to wait for a reboot. You should see
something like what's depicted below.

Figure 12 - Power button test

For the C1+ the O's and 1's are flipped, just the way |
happened to set it up. The image above shows the C2
test. If you don't get the same results, turn off the
device, separate your case -- remember, we decided
not to close it -- and double check your jumper
positions on the GPIO header. If it is working, then
awesome! Try holding the button for different periods
of time. It will print out to the terminal what script
would run for that duration. Below is a listing of the
functionality we'll setup.

02 Second Hold:
Software reset. - 04 Second Hold: Software shutdown.
- 06 Second Hold: Turn off game kiosk mode. - 08
Second Hold: Change to 1024x768x32bpp resolution
and reboot. - 10 Second Hold: Change to 720px32bpp
resolution and reboot.

Software Button Functions: -

Now that we've tested the custom control button's
functionality, let's add it to the system as a service.
From time to time, depending on the SD card and a
few other things, the device may act up. This software
control button is really useful for forcing it to cleanly
reboot in a safe and controlled way. Open up a
terminal and run the following commands. These will
start

register, service to

automatically on boot.

start, and flag our
Open up a terminal --
Applications -> System Tools -> MATE Terminal -- and
run the following commands. Resist the urge to test
the 6, 8, and 10 second functions. We don't want to

mess with boot.ini just yet.

$ sudo sudo cp pwrbuttonsvc.service
/etc/systemd/system

$ sudo cp ./power btn
/usr/bin/power btn test

$ sudo systemctl start pwrbuttonsvc

$ sudo systemctl enable pwrbuttonsvc

If you ever need to stop the service you can use this
command, but don't run it now.

$ sudo systemctl stop pwrbuttonsvc

Are you ready? Hold the custom control button for 4
seconds and a tiny bit extra. You can practice on the
test script we ran above. The system should shut
down really fast and, if you counted correctly, it
shouldn't boot up. If you held it for 2 seconds less, it
would have done the same thing but then come back
up from the reboot.

Finalizing MATE... Really This Time

| hope you're really enjoying everything so far. It's
really very cool to finally connect the button and make
that literally part of the operating system. We have a
little bit more work to do with MATE but it'll go by
quickly, I promise. Right-click the top panel and select
Add to Panel, then scroll down through the list of
options until you find the Shut Down entry. Click Add
and use the middle mouse button or mouse wheel to
grab the new widget and position it so that it is about
an inch or so away from the open programs widget.
By keeping all the controls in a tight group, we greatly
enhance the user experience when controlling things
with the gamepad.

Next, we're going to add two custom buttons to the
top panel. Right-click the panel and select Add to

Panel. Choose the very first option, Custom

Application Launcher. We'll add the stop button first
and then the play button. The form field values are
listed below. Use the screen shots to navigate to the
proper icon. You can see the path in the screen
capture near the top of the window.

Stop Button Values:

Type: Application

Name: Stop RetroArch
Command: /home/odroid/stop auto
Comment: Stops RetroArch if running
windowed. (Really just stops RetroArch and

resets AntiMicro)

Start Button Values:

Type: Application

Name: Start RetroArch
Command: /home/odroid/start auto
Comment: Starts RetroArch and AntiMicro

scripts.

The screenshots below depict this step. Use them to
help with finding the right icon if need be.

Figure 13, 14, and 15 - Setting up custom applications

Let's test the new controls. Close RetroArch and any
other open window. Click on the play button and you
should see RetroArch pop up. Click the stop button
and RetroArch will close. Wait about 5 seconds, and
you should see AntiMicro in the system tray giving us
back full gamepad control.

Wow, this is really cool. We've completely customized
our ODROID-GO hardware and software to create a
retro gaming console with RetroArch kiosk mode and
full Linux environment, if needed. The next thing we'll
do is make RetroArch run in fullscreen mode and
adjust a few video settings. | won't go into advanced
configuration here. This tutorial is about as long as |
like to make them, so I'll push advanced RetroArch
and emulator errata to a small follow up tutorial. Start
RetroArch, and you can use the little widget you just
made! Scroll right to the Drivers section find the Video
entry.

Figure 16 - Scroll right to the Drivers section find the
Video entry

Apply the following settings listed below in the order
they have been listed. The application may close and
re-open for some of the settings you change; that is

normal.
Windowed Fullscreen Mode: Off
Show Window Decorations: Off

Threaded Video: On

Bilinear Filtering: Off

Start in Fullscreen Mode: On

Use the ESC button to close RetroArch when itis in
fullscreen mode or use the keyboard/mouse to
navigate to the Main Menu section and select Quit
RetroArch.

Hold your custom control button down for 2 seconds
plus a tiny bit more and the system will reboot. When
it comes back up, you should see a full RetroArch
screen as depicted below. Scroll over to your ROMs
with the gamepad and fire one up. Game on!

Figure 17 - Full RetroArch Screen

Updating boot.ini

For this section, the first thing we'll do is make a
backup of the boot.ini file. Open the boot icon on the
desktop and copy boot.ini to boot.ini.orig. We're also
going to make two more copies: one you'll name
boot.ini.1024x768p32bppVga, and one you'll name
boot.ini.1280x720p32bppHdmi. We'll get to editing
them in just a bit. You should have something similar
to what's depicted below.

Figure 18 - Copy boot.ini to boot.ini.orig

In my experience, these video settings work really
well. The VGA resolution of 1024x768 is supported on
most, if not all, recent computer screens, and the

resolution of 720p is supported on most, if not all,
recent TVs. While the ODROID-C2 has noticeably more
power, we really don't need more than 720p to
display 8bit and 16bit games. Of course, you can
make your own choices here as you see fit. The idea is
if we plug our device into a TV, we can hold the
custom control button for the proper amount of time
and the device will reboot with the proper, memory
efficient, HDMI resolution. If we bring the device with
us to work and we want to play some awesome
games at lunch we can hold the custom control
button for the proper amount of time and the device
will reboot with the proper VGA resolution.

Let's boot up our ODROID device and close RetroArch
by hitting escape on the keyboard or navigating to the
exit option using the controller. Open up a terminal,
Applications -> System Tools -> MATE Terminal, and
type the following command.

$ nano power btn

Scroll down to the bottom of the file and edit the text
such that it matches the image depicted below. Once
you've adjusted the file hit Ctrl+O to write the file, and
Ctrl+X to close the nano. I'll post the text we're
focusing on below.

S elif [$count -ge 8] && [S$count -1t 10]
&& [$GPIO VALUE -eq 1]; then

count=0

$ sudo cp

/media/boot/boot.ini.1024x768p32bppVga
/media/boot/boot.ini

$ sudo shutdown -r now

#killall retroarch

#cp /home/odroid/Scripts/retroarch.cfg.usb
/home/odroid/.config/retroarch/
#/home/odroid/start _ra

S elif [
eq 1 17

$count -ge 10] && [$GPIO_VALUE -
then

$ count=0

$ sudo cp
/media/boot/boot.ini.1280x720p32bppHdmi
/media/boot/boot.ini

$ sudo shutdown -r now

#killall retroarch
#fcp /home/odroid/Scripts/retroarch.cfg.hdmi

/home/odroid/.config/retroarch/

#/home/odroid/start ra
S fi

Note that the C1+ will be slightly different than the
text above. It uses [$GPIO_VALUE -eq 0]
comparisons, but we're really only interested in the
file copy commands and commented out commands.
Keep in mind that you shouldn't be changing anything
else. Next, run the following command in the terminal
to activate the script.

$ sudo cp ./power btn
/usr/bin/power btn test

Once that is done we'll adjust the copied boot.ini file
you made to reflect the proper output and resolution.

Essentially, we copy over the boot.ini file with a pre-
configured version that is set to a certain screen
resolution, then we reboot the device. I'll cover the
changes we need to make to each file for the C1+ and
the C2, but I'll also provide a download for them to
make things a bit easier. We'll cover the C2 first.

Open a terminal and type in the following commands.
We'll do the 1024x768 VGA mode first.

$ cd /media/boot/
$ nano boot.ini.1024x768p32bppVga

We want to set the video output to be 1024x768 VGA.
Comment out the lines listed below. Make sure there
are no uncommented video output modes except the
one we want.

setenv display autodetect "true"

setenv m "1080p60hz" # Progressive 60Hz

Make sure the lines below are uncommented. If you
make a mistake, just restore the boot.ini.orig copy
you made earlier. Any Windows or Mac computer will
see the boot partition of your ODROID's SD card
because it is a Fat32 partition. You can use that to fix
your boot.ini if the device isn't booting up properly.

S setenv m "1024x768p60hz"

$ setenv vout "vga"

Next we'll do the 720p HDMI mode. Open up a
terminal and type the following commands:

S cd /media/boot/
$ nano boot.ini.1280x720p32bppHdmi

We want to set the video output to 720p HDMI.
Comment out the lines listed below. Make sure there
are no uncommented video output modes except the
one we want.

setenv display autodetect "true"

setenv m "1080p60hz" # Progressive 60Hz

Make sure the line below is uncommented.

$ setenv m "720p60hz" # 60Hz

ALERT: Many computer screens don't support 720p. If
that is the case, you'll likely end up booting into a
blank screen. Just wait a minute or two then use the
custom control button to change the video mode to
1024x768. It takes a little getting used to, but once
you get the hang of it you can switch modes fairly
easily. Below is a screenshot of a Monku Retro 2
(ODROID-C2) running in VGA mode on a computer
screen after closing RetroArch.

Figure 19 - Monku R1 Build 36

And here is the R2 running in 720p ona TV.

Figure 20 - The R2 running in 720pona TV

Like any good TV cooking show we have an already
prepared dish to show you. For the C1+ use the
guidelines above along with the files provided below.
The process is similar, the files provided indicate the
changes you need to make. Or you could just copy
and paste them into your /media/boot directory, it's
really up to you.

- Monku R1 / C1+ boot.ini - Monku R2 / C2 boot.ini

Finishing up

Closing up the case is pretty simple, but I'll go over it
anyway. It's not fun to finish everything, close the case
and tighten the outside screws before you remember
to put in the inside screws, trust me. First thing you'll
want to do is organize your jumpers. They can get a
bit crazy so | usually curl and twist them up.

| highly recommend cutting out the SD card door
because it gives you so much benefit as far as easily
being able to swap in and out SD cards etc. | used a
razor blade to scour all the little plastic tabs holding it
on. Two close to the edge of the case are easy and
safe to cut into with a bit of pressure. After a little
while you'll cut through the two tabs near the edge of

the case first. Then bend the door up to twist off the
remaining tabs. Tip: Weaken the tabs as much as you
can by scratching at them with a razor.

Mount the board in the case and place and tighten
the two screws on the one side of the case. The
remaining screws are inserted from the outside of the
closed case. Before you close the case try to see if it
goes together easily. You may have to adjust some
jumpers to get it to do this. Snap the case together,
place and tighten the outside screws, and you're all
set.

Figure 21 - The final product

| hope you had fun going through this process to
build your own retro gaming console from the ground
up. | know | did. I'll have more to say in a follow-up
tutorial that touches on some advanced topics
regarding RetroArch and emulator configuration. Until
then, game on!

For comments, questions, and suggestions, please
the original
http://middlemind.com/tutorials/odroid_go/mr1_bui
Id_fn.html.

visit article at

http://middlemind.com/tutorials/odroid_go/mr1_build_fn.html

ODROID-N2 Composite Video Connection: Use Your Legacy
Monitor With Hardkernel’'s Most Powerful Computer

@ September 1,2019 & By DongJin Kim = ODROID-N2, Tinkering

Composite video is an analog video transmission that
was popular before the age of digital television, with
supported resolutions of 480i and 576i. The ODROID-
N2 supports this video feature, and is designed to
connect with a TV through its audio jack.

Hardware connection

The Composite Video Blanking and Sync (CVBS) video
signal is assigned to the audio connector (CON6) and
TV can be connected with a specialized cable available
from Hardkernel at
https://www.hardkernel.com/shop/3-5mm-male-
plug-to-3-rca-female-audio-video-cable/.

Figure 1 - Composite video cable connected to the
ODROID-N2

https://www.hardkernel.com/shop/3-5mm-male-plug-to-3-rca-female-audio-video-cable/

In order to select CVBS as a display output rather than
HDMI, the Linux kernel command line must be
configured properly and HDMI cable must not be
attached. The CVBS picture format can be set in the
boot.ini file:

NTSC
setenv cvbsmode "480cvbs"
PAL

fsetenv cvbsmode "576cvbs"

setenv bootargs "${bootargs}

cvbsmode=${cvbsmode} cvbscable=S${cvbscable}"
Figure 2 - Schematic of composite video cable

connection For example, if the TV supports 480CVBS
picture format and its cable is connected,
the Linux kernel command line would look

like this:

$ cat /proc/cmdline
console=ttyS0,115200n8 ... cvbsmode=480cvbs

cvbscable=1

Overscan (Android)

The Android operating system supports a zoom in/out
method in order to manage the overscan. You can
adjust it via the ODROID Settings Android app, or by
directly editing the boot.ini file. The zoom rate value is

Figure 3 - TV connection with RCA male-to-male cables between from 80% and 100%:

Display Zoom Rate

setenv zoom_rate "100"

Shrink the picture as 10%

setenv overscan=10

setenv bootargs "${bootargs}

overscan=${overscan}"

For comments, questions, and suggestions, please
visit the original Wiki article at
https://wiki.odroid.com/odroid-

Figure 4 - Composite video with a legacy monitor lets n2/application_note/cvbs. To see the ODROID-N2

you enjoy retro gaming as it was originally intended using a composite video connection in action, please

check out https://www.youtube.com/watch?
Software configuration v=UK8T1s6ufnM.

https://wiki.odroid.com/odroid-n2/application_note/cvbs
https://www.youtube.com/watch?v=Uk8T1s6ufnM

The G Spot: Your Goto Destination for all Things That are

Android Gaming

@ September 1,2019 & By Dave Prochnow £ Android, Gaming, ODROID-N2, ODROID-XU4

The biggest game news for August has to be the July
29 release of Gigantic X for Android. As you'll recall,
this top-down sci-fi shooter was promised for release
several months ago. Well, the wait is over. This is a
great summertime treat for all shooter fans.

Figure 1 - A summer blockbuster-Gigantic X

During gameplay, you'll battle alien parasites
throughout the galaxy while searching for all of the
loot that you can unlock for upgrading your weapons.
As a special bonus, there is a cooperative player mode
which enables you to get your friends to help you
purge all of these pesky parasites. As an added
bonus, the developers have added a series of special
launch-day rewards that players can win. So gear up

at Google Play.

Figure 2 - Some of the special launch-day rewards that
you can win. Image courtesy of Action Square

Be aware that if you want to play Gigantic X on an
Android tablet without a WiFi connection, you'll be
disappointed unless you can jack into the net during
game play. Unfortunately, the game’s developer,
Action Square, requires the download/installation of
an 40-100MB app patch prior to starting the game-
every time! Arrgh! Why, Action Square, why?

Figure 3 - No server connection-no game play!

https://www.facebook.com/GiganticX/

Gigantic X - Official Trailer

Free Africal OK, so shoot-em-ups aren't your bag.
Well, if an addictive strategy premise is more your
game style, then you'll absolutely love what developer
tukasz Jakowski has done with Age of Civilizations:
Africa.

This time-honored, turn-based strategy game still has
the same game goal: total continental domination of
Africa. In your attempt to conquer Africa, you must
cope with 235 civilizations coupled with 436 provinces
that are all wrapped up inside five game scenarios.
The terrific twist for this summer is that Age of
Civilizations: Africa is now FREE! Okay, so this title has
been a free download for several months, but what
better way to battle the summer heat than sitting in
the air conditioning, trying to conquer one of the
world's hottest continents?

https://www.youtube.com/watch?v=qVUQro1xwyQ
https://www.youtube.com/channel/UCTaDgjN82qD28D1cF2BmtEw

Figure 4 - There's a lot of real estate to grab in this game

Save $5 Another popular game dev that is giving you a
treat to beat the heat is Light Wave Games, the same
crew that brought you Strike Team Hydra, with their
title Demon’s Rise 2. This formerly $5.99 Android app
is now on sale for just $0.99. Before you plunk down
your USD, remember that this is a game with a twist.
And that twist is that in this role-playing game you are
a commander for the dark forces of beasts,
barbarians, and of course, demons. Your talent at
wielding hellfire will help you to scorch all of the
civilized worlds that populate this game. No more
Mister Nice Guy, indeed.

Demon's Rise 2 - Lords Of Chaos - i0OS Trailer

Cool Games for a Hot Summer

Majotori (Now FREE) Venus Eleven Traitors Empire
Card DOOM & DOOM Il (Now $4.99 each on Google
Play.)

https://www.youtube.com/watch?v=r0VY2pHbLm8
https://www.youtube.com/channel/UCAIGJn8wLYm5IddQ0E7Qliw

ODROID-N2 Review

O September 1,2019 & By Carlos Eduardo de Paula (carlosedp.com) & ODROID-N2

| recently received an ODROID-N2 SBC from
Hardkernel, which is a new board replacing the
previous ODROID-N1, which was cancelled. |
purchased the ODROID-N2 board, power supply, a
clear case, WiFi USB adapter and a 32GB eMMC card,
since the eMMC is much faster than SD cards.

Figure 01 - The ODROID-N2

Figure 02

The nice thing about the ODROID-N2 is that is uses a
different SOC, an Amlogic S922X, giving a new
perspective compared to most RK3399 top-end
boards we see these days.

Some board specs:

= Hexa-core Amlogic S922X CPU with quad ARM Cortex-
A73 and dual Cortex-A53 cores

= 4GB DDR4 RAM
= 1Gbps Ethernet

= 4 USB 3.0 ports (USB 3.0 hub behind a single USB 3.0
port from the SOC)

More details about the specifications can be found at
https://www.hardkernel.com/shop/odroid-n2-with-
4gbyte-ram/. My tests are always focused on server
and console workloads. There are lots of benchmarks
on Youtube and other blogs running games on either
the Android or Linux desktops.

Now with the latest features from Docker, where you
can build ARM images as easy as for x86 (as | wrote
here https://bit.ly/321)80b), there are almost no
drawbacks to use an ARM SBC for your server needs. |
hope Hardkernel and Amlogic send the patches
upstream to support this board. You will need to use
Hardkernel's own Kernel tree at
https://github.com/hardkernel/linux. More details
on their wiki at https://wiki.odroid.com/odroid-
n2/odroid-n2.

First thing | did was installing DietPi, a lightweight
Linux distribution based on Debian. They already
have an image for the ODROID-NZ2. | just downloaded,
unpacked the file, and flashed it to the eMMC
memory using Balena Etcher
(https://www.balena.io/etcher/). Remember to order
the ODROID eMMC-USB reader
(https://bit.ly/2ZjxC2L)--it will make your life easy.

CPU/Memory Benchmark
First, | compared synthetic benchmarks (DietPi
benchmark and 7zip). These tests give a brief

overview of the performance of the ODROID-N2 and
an RK3399-equipped SBC..

ODROID-N2-4GB

https://www.hardkernel.com/shop/odroid-n2-with-4gbyte-ram/
https://bit.ly/321J80b
https://github.com/hardkernel/linux
https://wiki.odroid.com/odroid-n2/odroid-n2
https://www.balena.io/etcher/
https://bit.ly/2ZjxC2L

so the results will be aligned with the other
benchmarks shown here.

The benchmarks were run in a Docker container with

the parameters:
[Fig. 03]
$ docker run -it --rm -v $(pwd):/test
openjdk:8ul8l-jdk-stretch bash

Canlosschabistiiad izt Java -jar SPECjvm2008.jar -wt 30s -it
7-zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21 . . .
p7zip Version 16.02 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,64 bits,6 CPUs LE) Im -bt 6 -i 3 -ikv -ict

LE [benchmark]
CPU Freq: 864 1368 1797 1796 1797 1797 1797 1797 1797

RAM size: 3711 MB, # CPU hardware threads: 6
RAM usage: 1323 MB, # Benchmark threads: 6

Compressing | Decompressing
Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS mMIPS | KiB/s % MIPS MIPS

6017 516 1135 5853 121781 550 1890 10386 .
6148 532 1179 6265 119234 549 1879 10317 [Fig. 07]
6099 535 1227 6559 115212 543 1861 10112

113745

Here are the Core speeds and a temperature

. measurement during the benchmarks (100% on all
[Fig. 04]

Firefly RK3399-4GB

cores)

DietPi CPU Info

Architecture aarché64
Temperature 58'C : 136'F
Governor interactive

[Fig. 05

carlosedpaFirefly3399: 7zr b

7-zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21

p7zip Version 16.02 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,64 bits,6 CPUs LE) [Fig, 08]
L=
CPU Freq: 1785 1791 1790 1790 1791 1791 1790 1791 1790
RAM size: 3811 MB, # CPU hardware threads: (]
Ul ueeges 129 (L, 4 Henelmmi Wineaise g Benchmark openJDK Java 1.8.0_181 Java 1.8.0 - OdroidN2 Performance Diff (positive is faster)
Compressing | Decompressing compress 58.72 64.5 9.84%
Dict Speed Usage R/U Rating | Speed Usage R/U Rating crypto.aes 3585 43.49 21.31%
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS cryptorsa 497.01 654.92 31.77%
4693 505 905 4566 93626 524 1523 7985 crypto.signverify 659.5 831.44 26.07%
4195 480 890 4274 90674 522 1502 7846 crypto composite 227.35 287.16 26.31%
4199 524 861 4515 89313 ggg 1490 7839 derby 126.33 182.43 44.41%
mpegaudio 57.82 77.58 34.18%
scimark.large 41.06 44.14 7.50%
scimark.small 86.01 91.68 6.59%
[Fig' 06] serial 58.15 81.32 39.85%
sunflow 30.42 43.32 42.41%
. xml 169,83. 246.37 45.07%
On average, the ODROID-N2 is 30-35% faster than
. . Average: 27.94%
Firefly RK3399, my default board. Also it has way [Fig. 09]

better memory throughput, up to 40% faster. | also
benchmarked other RK3399 boards in the past and
they all score close to the Firefly numbers.

Java Benchmarks

Next, | ran some Java benchmarks aligned with my
previous post comparing results on SPECjvm2008. On
those tests, | ran them on the Firefly RK3399, as well,

[Fig. 10]

As can be seen, the performance increases around
30% persists compared to RK3399.

Network

| then tested the network using iperf3. | test both TX
and RX using the 1Gbps Ethernet connected to the
same switch as the other computer. For a server, |
used my Macbook Pro connected with a 1Gbps
Ethernet adapter. Figure 11 shows the results from
the ODROID-N2:

carlosedpaDietPi:~ $ iperf3 -c 192.168.15.141

Connecting to host 192.168.15.141, port 5201

[4] local 192.168.15.15 port 42276 connected to 192.168.15.141 port 5201

[ID] Interval Transfer Bandwidth Retr Cwnd
.00-1.00 sec 103 MBytes 859 Mbits/sec 0 3.98 MBytes
.00-2.00 sec 101 MBytes 851 Mbits/sec 4.01 MBytes
.00-3. sec 100 MBytes 837 Mbits/sec 2.00 MBytes

sec 98.8 MBytes 792 Mbits/sec 1.02 MBytes

sec 95.0 MBytes 830 Mbits/sec 235 KBytes

sec 98.8 MBytes 801 Mbits/sec 212 KBytes
sec 100 MBytes 876 Mbits/sec 382 KBytes
sec MBytes 847 Mbits/sec 430 KBytes
sec .6 MBytes 837 Mbits/sec 458 KBytes
sec .5 MBytes Mbits/sec 358 KBytes

Bandwidth
834 Mbits/sec
831 Mbits/sec

Transfer
995 MBytes
991 MBytes

Interval
0.00-10.00 sec
0.00-10.00 sec

[Fig. 111

sender
receiver

Reverse traffic mode gets lower numbers, but | saw
similar results while testing the RK3399 board.

carlosedpaDietPi:~ $ iperf3 -R -c 192.168.15.141
Connecting to host 192.168.15.141, port 5201
Reverse mode, remote host 192.168.15.141 is sending
[4] local port 42280 connected to 192.168.15.141 port 5201
[ID] Interval Transfer Bandwidth
.00-1.00 29.8 MBytes 250 Mbits/sec
.00-2.00 57.2 MBytes 480 Mbits/sec
.00-3.00 78.5 MBytes 659 Mbits/sec
.00-4.00 49.5 MBytes 415 Mbits/sec
.00-5.00 60.0 MBytes 502 Mbits/sec
MBytes 510 Mbits/sec
MBytes 528 Mbits/sec
MBytes 608 Mbits/sec
MBytes 533 Mbits/sec
MBytes Mbits/sec

.00-6.00 60.
.00-7.00 63.
.00-8.00 72.
.00-9.00
.00-10.00

Bandwidth
521 Mbits/sec
521 Mbits/sec

Transfer
621 MBytes
621 MBytes

Interval
0.00-10.00 sec
0.00-10.00 sec

sender
receiver

[Fig. 121

| tried disabling network checksum offload (a known
issue on Rockchip SOCs) but the performance results
were the same.

Conclusion

The board has a huge potential and is the most
powerful ARM SBC | have ever seen. It suits many use
cases, ranging from a home/mini server to a full-
featured media center or desktop computer running
almost any workload either installed or in containers.
It is fantastically suited for a Kubernetes cluster with
multiple nodes. Also it's power consumption is
amazing and can be always ON with only 2.8W while
idle and 6.5W while benchmarking with all 6 cores at
100%.

Figure 13 - Consumption while on 100%

It is easy to flash new images (using eMMC) and
connectivity is plenty for most use cases. | would love
to see a PCI-E slot or an M.2. connector for NVME
drives. Actually | found a document that states that
the S922XSOC contains a 1 lane PCI-E that, in the
ODROID-N2 case, was used for the USB 3.0 port.
Other companies could provide this PCI-E lane as a
M.2 connector or PCI-E slot.

All'in all, I highly recommend the board and place it
on top of my list with it's features and within a
reasonable price point for its performance and
features. Also, in the near future, | think | might
transform it into an ARM64 desktop with a full-
featured Linux distribution like Ubuntu or Fedora, if |
can port it.

References

https://bit.ly/2ziyPbX
https://github.com/Michalng/DietPi/issues/2028

https://bit.ly/2ziyPbX
https://github.com/MichaIng/DietPi/issues/2028

Five Minute Fun with your Monku R1: SD Card Partition Resizing

© September 1,2019 & By Brian Ree & Linux, Tutorial

This tutorial will show you how to adjust the partitions
on an SD card made from an image of a smaller sized
SD card. For example, you have a fresh new 32GB SD
card ready for your Monku1000 / ODROID-GO (
https://www.hardkernel.com/shop/odroid-go/) and
you have a backup image from your friend's device
but it's only 16GB. After you write the image to the
new SD card you notice you can only address around
16GB of space. What happened to your other 16GB?
No worries, I'll show you how to resize partitions
using your ODROID device. You'll need a Ubuntu
based ODROID device like the one we showed you
build R2
(http://middlemind.net/tutorials/odroid_go/mr1_bui
Id.html), R3
(http://middlemind.net/tutorials/odroid_go/mr3_bui
Id.html).

Tools Needed

how to for R1 or

and

= An ODROID-C1+, -C2, or -XU4

= |t's expected these devices are configured with Ubuntu
MATE.

= 8GB or larger microSD card

= MicroSD to USB adapter

Fire up your ODROID device and let's get started. If
you have gparted installed, it will be available from
the menu system at System -> Administration ->
GParted. If you don't have gparted installed, please
run the following commands. Open the MATE
terminal at this menu location Applications -> System
Tools -> MATE Terminal. Then, enter:

$ sudo apt-get install gparted -y

After installation, run gparted. Open this menu
location System -> Administration -> GParted. An
application like the one depicted below should
appear. If you are prompted for a password, enter in
the default root password, odroid, or, the password
you are using.

https://www.hardkernel.com/shop/odroid-go/
http://middlemind.net/tutorials/odroid_go/mr1_build.html
http://middlemind.net/tutorials/odroid_go/mr3_build.html

Figure 1 - Password prompt when starting Gparted

Make sure to select the correct drive from the drop
down list in the top right hand corner of the screen.
ALERT: Double check that you have the correct drive
selected or you could potentially lose data by
selecting the wrong drive. Notice how the partition
information that comes up in gparted shows that
14GB of space are unallocated! We want to be able to
use that extra space but since we flashed this SD card
from an image based on a 16GB SD card it ignored
the remaining storage space! Take note of the file
system used for the active partition on the SD card,
we'll need to use this when we create a new larger
partition. ALERT: Write down the file system used if
you're new to this procedure because you'll have to
restore this file system later on.

Figure 2 - Gparted partition information

Resizing the Partition

There are different ways to accomplish resizing the
partition. The one I'll outline here takes a bit longer
but will ensure that you have an SD card that MacOS
and Windows will also be able to read. First thing
you'll need to do is right click on the desktop and
create a new folder. Name it whatever you like we'll
just be using it temporarily to hold the original SD
card's files. Copy all the files and folders from the SD

card into the folder you just created. You should see a
file copy bar come up like the one depicted below.

Figure 3 - Copying all the needed files to the SD card

Once the file backup is complete close and re-open
gparted from this location, System ->
Administration -> GParted. Make sure you select the

menu

proper drive from the drop down menu on the top
right hand side of the application window. Right click
on the active partitions listed and unmount them,
then delete them. You should end up with no
partitions and one entry that shows the full SD card
size as unallocated. Next, right click and select the
option to Add a New partition. Use the options
outlined below. Essentially, you want to keep the file
system of the original SD card, in this case fat32, and
you want to make sure there are 0 Mibs unused after
the partition--the single partition is as large as it can
be. Recall the file system you noted when we first
viewed the SD card. Now click the Add button and
then click the Apply All Operations button. A green
check button will appear near the top of the
application window and gparted will apply the
partition changes you have selected.

Figure 4 - Create a new partition in Gparted

When the partition is ready, close gparted, disconnect
and reconnect (mount) your SD card, and restore the
original files you backed-up up to your ODROID

device. When the files are finished being restored you
can test the SD card by comparing it to the original or
using it with the same device. Just pop the microSD
card into your Monku1000 / ODROID-GO to see if it
works. As depicted below our device powers up fine
and recognizes our ROMs. Secondly, we need to check
the card in a MacOS or Windows machine to make
sure that it plays nice with those operating systems.
Also depicted below, we can see that MacOS
recognizes the SD card as having a 31GB capacity.
ALERT: You won't see the full manufacturer-stated
capacity listed on an SD card due to file system
housekeeping and maintenance allocations. Now you
can access that remaining 14GB of microSD card
space. Awesome!

Figure 5 - ODROID-GO with all the files you need

Figure 6 - SD card mounted in macOS

We hope this tutorial provided you with a thorough
understanding of how you can adjust the sizes of
partitions on SD cards. This article has been adapted
from

http://middlemind.net/tutorials/odroid_go/5mf_mr1
where further ODROID tutorials

_pr.html, are

available.

http://middlemind.net/tutorials/odroid_go/5mf_mr1_pr.html

Manage your kid's computer time with mqttNanny

@ September 1,2019 & By Adrian Popa & Linux, Tutorial

In my last article | was setting up my ODROID-H2 as a
first computer (running Linux) for my 7 year old son.
As you know, with great power
responsibility, so this means | have to be able to
enforce some limits on computer time. Especially
since, my son will be spending some summer vacation
time with his grandparents. This gave me the perfect
excuse to create a time management and monitoring
system for Linux and integrate it into Home Assistant.

comes great

How it works

The software is essentially a Python 3 script that runs
as a daemon. It has two operation modes - local and
remote. It starts in local mode when it cannot connect
to a MQTT broker. In this mode it loads its limits from
a file and is less flexible. When running in remote
mode it gets the allowance for the current user from a
MQTT broker and allows the parent to control (and
follow what the user is doing) dynamically. Basically,
remote mode offers all the features, while local mode
is a fallback in case of connectivity issues.

The main program loop runs every minute and
gathers (and reports) information, such as:

= what is the active TTY?
= what user is logged in using X11 in the current TTY?
= is the screensaver running?

= what is the active application title?

For the currently logged in user a counter is
decremented every minute while the screensaver is
not running. There are some notifications sent to the
user (via notify-send and audible) when there are
10/5/1 minutes left. When time runs out, the
screensaver is enabled and the user account is
disabled (makes password login fail). Should the
screensaver fail to enable 5 times in a row, the system
is shutdown instead. Once allowance is greater than
zero, the daemon restores the password of that

account.

MQTT gives you the ability to see the collected data,
to change the allowance for each user and also to

request screenshots of the user's desktop session. To
follow through you will need to understand and have
a MQTT broker and also run Home Assistant - both
are out of the scope of this article, but have been
discussed before.

Installation and configuration

You can download and install the code from my
GitHub page:

$ sudo apt-get install git

$ cd /usr/local/share

$ sudo git clone https://github.com/mad-
ady/mgttNanny.git

$ cd mgttNanny

$ sudo cp mgtt Nanny.yaml
/etc/mgttNanny.yaml

$ sudo cp mgttNanny.service

/etc/systemd/system/mgttNanny.service

You will need to install some dependencies as well:

$ sudo apt-get install python3-pip python3-
yaml python3-notify?2
espeak xscreensaver xdotool imagemagick

$ sudo pip3 install paho-mgtt

Note that, currently, only Linux systems are
supported, but the code is written so that it could be
extended for other OSes, as well (pull requests are
welcome). The Linux system needs to be running Xorg
(Xwayland probably needs many changes) and the
screensaver program needs to be Xscreensaver (not
mate-screensaver, xfce-screensaver, etc). Support for
other screensavers could be added in the future,
though (pull request welcome). The code was tested
on a ODROID-H2 (x86_64), ODROID-XU4 (armhf) and
an ODROID-N2 (arm64). To migrate from mate-
screensaver to xscreensaver, you can do the
following:

S sudo apt-get purge mate-screensaver

$ xscreensaver-demo

While running xscreensaver-demo you can select
which screensavers you want to use and also enable
"Lock screen after" option to force it to ask for a
password. You will need to make the desktop
environment start the screensaver automatically by
copying it to the autostart folder:

S mkdir ~/.config/autostart
$ cp /usr/share/applications/xscreensaver-
properties.desktop

~/.config/autostart/
$ sed -i 's/xscreensaver-demo/xscreensaver/'
~/.config/autostart/xscreensaver-

properties.desktop

Also, make sure the system time is set correctly at
boot (either via a RTC, NTP or fake-hwclock),
otherwise local mode timekeeping will not work
correctly.

You will need to edit the
(/etc/mqttNanny.yaml) and set your relevant defaults.
Make sure indenting is correct in the file (you can

validate it with http://www.yamllint.com/), otherwise

configuration

the program will fail to start. The options available are
described below:

= mqttServer - the ip/dns name of your MQTT broker

= mqttPort - the TCP port your broker runs on (default
is 1883)

= mqttUser/mqttPass - your MQTT credentials. If your
broker does not use authentication, simply omit the
lines

= baseTopic - a prefix used to build the topics used to
send/receive messages. | personally use ha//

= mqttTimeTopicSuffix - the time remaining for each
user will be transmitted in a topic built from //. In my
case it is something like ha/pc/odroid/timeRemaining

= mqttScreenshot - the topic where you want to receive
screenshot images (MQTT can transport binary data as
well)

= mqttScreenshotCommand - the topic where you can
request screenshots or not. This can be mapped to a
switch in Home Assistant to toggle screenshots on or
off

= mqttScreenshotDuration - how long until the
screenshot feature turns itself off. If you want it always
on, setitto0

= mgqttScreenshotinterval - how often (in seconds)
should it grab screenshots

= screenshotHeight - resize the screenshot to this
height (keeping aspect ratio), for efficiency reasons

= checklinterval - how often should the script's internal
clock tick. A value of 60 seconds means that allowance
is checked every minute. You also get application
changes every minute.

= externalNotify - should either be False or point to a /usr/local/share/mqttNanny//, that value is loaded
program/script that takes a string as an argument and instead. That file is updated on every allowance
sends the message to you. For instance, | set it up to change/decrease
/usr/local/bin/telegram-send and get notified of events
through a telegram bot J 12.168.1.14

Figure 2. Sample configuration for two users.

To address security concerns, make the configuration
file readable only by root:

$ sudo chown root:root /etc/mgttNanny.yaml

$ sudo chmod 400 /etc/mgttNanny.yaml

A service file can be used to control the daemon:

$ cat /etc/systemd/system/mgttNanny.service

[Unit]
Description=mgttNanny

After=network.target

[Service]
ExecStart=/usr/local/share/mgttNanny/mgttNan
ny.py
Type=simple
Restart=always

RestartSec=5

[Install]
Figure 1. External notifications WantedBy=multi-user.target
= no-signal - should point to an image file that is Then run the following commands:

displayed when screenshots are turned off

. . . $ sudo systemctl enable mgttNanny

= users - contains a list of users to monitor. If a user

S $ sudo systemctl start mgttNanny

which is not on the list logs in, their time is not

managed, but data about their session and .
g _ _ You can follow logs to troubleshoot by running:

screenshots still get reported via MQTT

= defaultOfflineTime - how many minutes the user gets $ sudo journalctl -f -u mgttNanny
at program startup in case the program runs in local
mode, without a connection to the MQTT broker. In
case a file with the user's current allowance is found in

Figure 3. Logs
Home Assistant integration

Once mqttNanny is running on the target computer it
is nice to be able to control it from a web interface. |
found Home Assistant to be the perfect interface for
Home Automation and custom/DIY scripts.

We will be adding a few components to Home
Assistant's configuration.yaml that will communicate
with the script via MQTT. Consult the appropriate
component documentation for more details.

camera:
- platform: mgtt
name: N2-PC Display
topic: 'ha/pc/screenshot'
switch:
- platform: mgtt

command_topic:
'ha/pc/screenshot/command’
state topic: 'ha/pc/screenshot/command'
'enable'
'disable’

N2-PC Enable screenshot

payload on:
payload off:
name:
retain: true
sensor:

- platform: mgtt
state topic: 'ha/pc/activeUser'
name: N2 Active User
- platform: mgtt
state topic: 'ha/pc/display'’
name: N2 Active display
- platform: mgtt

state topic:
'ha/pc/odroid/timeRemaining’
name: N2 Odroid time remaining

value template: '{{ value | int }}'

unit of measurement: 'minutes'
- platform: mgtt
state topic: 'ha/pc/application’

name: N2 Active application

binary sensor:

- platform: mgtt
state topic: 'ha/pc/screensaver'
name: N2 Screensaver
payload on: True

payload off: False

Once you reload Home Assistant's configuration you
can add the new items in the Lovelace web interface.
Below is a sample configuration based on the values
above.

Add an entities panel with this configuration:

entities:
- entity: sensor.n2 active user
- entity: sensor.n2 active display
- entity: sensor.n2 active application
- entity: binary sensor.n2 screensaver
- entity:

input number.pc odroid time remaining

- entity: sensor.n2 odroid time remaining
- entity: switch.n2 pc enable screenshot
show header toggle: false
title: N2

type: entities

Add a picture-entity panel with this config:

camera-view: live

entity: camera.n2 pc display

type: picture-entity

The end result should look like the Figure below:

Figure 4. Home Assistant control

You will also need to set up some automation to be
able to change the time allowance for a user. Make
your edits in automations.yaml and restart Home

Assistant:
- id: '1557839383"
alias: N2 change remaining time for Odroid

trigger:

- entity id:
input number.pc odroid time remaining

platform: state

action:

- data:

payload: "'{{
states (input number.pc odroid time remaining
) | int }}'
retain: true
topic: ha/pc/odroid/timeRemaining
service: mgtt.publish
- id: '1562675409185"
alias: N2 get remaining time for Odroid
trigger:
- platform: mgtt
topic: ha/pc/odroid/timeRemaining
condition: []
action:
- data template:
entity id:
input number.pc_odroid_time remaining
value: '{{ trigger.payload }}"'
service: input number.set value
- id: '1562675848675"
alias: N2 set daily time allowance for
user Odroid

trigger:

- at: 00:15:00
platform: time
condition: []
action:

- data:

payload: 35

retain: true
topic: ha/pc/odroid/timeRemaining
service: mgtt.publish

The last automation sets the daily allowed time for
the odroid user to 35 minutes and runs at 00:15. This
is just an example. You can devise your own
automations which define when the user can use the
computer. For example, if you want to give access
only during a time interval you could run an
automation to add allowance at the desired start time
and a different automation to remove allowance
before bed-time. You can control the amount of time
each user is allowed based on things like school-day
(https://www.home-
assistant.io/components/workday/) or maybe if they

have finished their chores (I would like to hear how
you can measure that automatically).

Bugs and future improvements

None of the code | write is perfect and this is no
exception. There are some problems and ways
around mqttNanny that | have identified so far
(patches/ideas welcome). The program is intended to
lock out a person with little Linux experience, but it
will not be very effective against a seasoned
sysadmin. When running in local mode there is no
built-in mechanism to give more time to the user. If
the computer is on for an extended period of time
you need to restart the mqttNanny service daily to
add a daily allowance. So it might not work as
expected if you suspend your computer instead of
When
local/remote modes data received from the MQTT

shutting it down. switching between
broker has higher priority. For example the kid could
start with no network connectivity, use up their
default allowance and then restart with network
connectivity to the broker. They would receive their
remote allowance as if nothing happened. When
running in local mode the protection is weak if the
2user can change the system time. They could
"borrow" time from other days in the future/past.
Only the X11 session is monitored/locked. The user
can log in a TTY before the lockdown, or via ssh with
key authentication and can keep using the system
(terminal based). If the user kills the screensaver
process, there's nothing to lock the session. The
process tries to lock the screensaver on 5 consecutive
times and if it fails, it will shutdown the system
instead. But the user could use the exploit in number
4 and unlock the screensaver from the command-line
(could run a script to continuously unlock it). If the
computer is not shut down gracefully (e.g. it is
unplugged) you will not have the correct state in
MQTT. The file /etc/mqttNanny.yaml used by the code
needs to be readable only by root, since it holds your
MQTT credentials. Otherwise the user could learn
them and use mosquitto_pub to change their time
allowance. The files that store used allowance per day
located in /usr/local/share/mqttNanny// are not
cleaned up automatically and may eventually fill up

https://www.home-assistant.io/components/workday/

your disk in a few centuries (1.5MB/year). A cron job
to delete old files may help.

| hope that future versions of the code will add
support for other screensavers for Linux, as well as
MacOS and Windows support (the os-specific code is

modular and should be easily extendable). Looking
forward to issues/patches.

References

https://www.home-assistant.io/

https://www.home-assistant.io/

A Powerful Multiboot Image for the ODROID-C2: Run Android,
Ubuntu MATE, and LibreELEC From A Single Boot Device

O September 1,2019 & By Alexander G (@alexxgg) £ Android, Linux, ODROID-C2, Tutorial

| am a web developer and | have been amazed with
Multiboot environments, especially on System On a
Chip (SoC) devices. | started this journey with a
Raspberry Pi 2 device and a bootloader called:
“Berryboot” (I am not its developer) that actually is still
active and supported by the Raspberry Pi community.

Then |
ODROID-C2 more powerful than a Raspberry Pi 2

heard about this amazing device called

device and actually the same price, so more power
more fun, right? A couple of weeks later | had a
ODROID-C2 device in my hands and the tests started.
| tested Ubuntu (Xenial at that time), Android,
LibreELEC, Recalbox, Lakka and few more operating
systems. Later | found out that someone (@loboris) in
the ODROID Forum (https://forum.odroid.com) had
developed bash scripts to make multiboot images on
ODROID devices including the ODROID-C2, after a
couple of days and a few tests, it worked. Since that
moment, | have generated by myself, multiboot

images out-of-the-box and ready to boot for ODROID-
C2.

You can download more multiboot images and
ODROID-C2 from here
(https://berryboot.alexgoldcheidt.com/odroid-c2/). |

standalone images for
run that web site by myself and I'll be glad to hear all
your suggestions, resolve issues and take image
requests. Recently, | generated the Multiboot Image
(Ver. 4) for ODROID-C2 with the following OS's

preinstalled:

= Android 6.0.1 [2019-01-17]

= Ubuntu MATE 18.04 Bionic LTS [2018-06-21] (Linux in
the boot menu)

= LibreELEC RR 9.1 [2019.04.24] (OpenELEC in the boot
menu)

| want to show you how you can generate this
multiboot image by yourself, so I'm sharing these files
and steps as a reference how-to guide. First, what is

https://forum.odroid.com/
https://berryboot.alexgoldcheidt.com/odroid-c2/

LibreELEC RR? Well, this version of LibreELEC includes
RetroArch and Pegasus.
information about this build here
https://bit.ly/30Aifjw. With this amazing, build one can
avoid installation of additional images like: RetroPie,

EmulationStation, More

Lakka, or Recalbox. It worked very well in my case.
Android and Ubuntu also work well as previous
multiboot images.

What you will need

= Linux (I have used Debian with Xfce desktop
environment). You can download it here
(https://www.debian.org/CD/http-ftp/#stable), and
just select the right architecture for your ODROID or
you can download any Live version (no install required)
like Ubuntu MATE, that can be downloaded here
(https://ubuntu-mate.org/download/). Again, just
select the right architecture for your ODROID.

= |nternet Connection.

= ODROID-C2 Device.

First, start with the multiboot base image. | have used
@sdip custom repo because that repo fixes a couple
of issues from the original repo of @loboris.
Additional be
https://bit.ly/2Hs1obf. You can generate the base

information can found here:
image by yourself or download the base image ready-
to-boot here: https://bit.ly/2ZnjwbL. the
download is complete, unpack it and flash it onto a
microSD card or eMMC module. | recommend the

supported eMMC module.

Once

OS #1: Android. Download Android Daily file here:
https://bit.ly/2Nxxczg. the
complete, rename it: update.tar.gz and put that file
onto a USB drive with a fresh single EXT4 partition

Once download is

format.

OS #2: Ubuntu. Download Ubuntu MATE 18.04 Bionic
LTS here: https://bit.ly/2Nwt4zr. Once the download
is complete, unpack it and rename it: linux.img and
put that file onto the same USB drive with the Android
file.

OS #3: LibreELEC RR. Download LibreELEC RR v9.1
here: https://bit.ly/30zlrLp. Once the download is
complete, rename it: oelec.tar and put that file onto
the same USB drive with the Android and Ubuntu
files.

Now insert the microSD card or the eMMC module
with the base image and plug the USB drive
(containing Android, Linux and LibreELEC) into your
ODROID-C2 device and turn it on. Once you see the
multiboot main screen, follow these steps:

= Press “I" (Prepare the card for MultiBoot, Install OS's).
= Change partitions sizes as you wish.
= Once again, press “I" to start the installation.

= When this process is completed, reboot the device.

In case you are not sure about which sizes do you
need to use on partitions, these are my suggestions:
use at least 9GB to 10GB on the Ubuntu partition
since that is the biggest OS in the multiboot image--
Ubuntu raw image size is around 7GB. Also, make
enough space on the LibreELEC partition if you are
planning to storage game ROMs.

<) Jdevisde - GParted [FRENC

[)/devrsdc (20.12 GiB) v

Idevfsde?
12.56 GiB.

GParted Edit View Device Partition Help

D@ =B ss

Idevisdc1 Idevisdce
238GiB 4.88 GiB.

File System |Label size Used Unused Flags
32.00 MiB — —
2.38 GiB 606.38 MiB. 1.78 GiB Iba
3.50 GiB 2.28 Gig
1.62 GiB 1.57 GiB
2159 Gig
412GB
4.88 GiB
12,56 GiB.
29.00 MiB

Idevisdc2
3.50 GiB

Idevfsdcs
4.12 GiB.

unallocated unallocated
Idevisdcl W32
Idev/sdc2 Mexa
Idevisdc3 exta emcacl he
= Idevisdca extended
sdevisacs [llexta emdata
sdevisac [l exta emoelec
IdevisdcT
unaliocated

emuserdata

122G
60.69 MiB.
3.39GiB
3.97 GiB
6.08 GiB

748.92 MiB.
926.80 MiB
6.48 Gig

|
L]
]
Mexs emlinux
unallocated

0 operations pending

Figure 1 - This is my eMMC module partition layout

Now, at this point you will be able to boot Android &
Ubuntu without any extra steps, to boot LibreELEC RR
you need to follow the steps listed at:
https://bit.ly/324hcJi from (and thanks to)
@malomehi. As reference, | will share my current
multiboot directory from my eMMC module in case
you want to compare or download files at your end.
You can see these files here: https://bit.ly/30yAl04.
Be aware that if you compare my boot files (from the
eMMC module) with the microSD card, you have to
change partitions labels. For example: emuserdata is
used on eMMC modules but on the microSD card
sduserdata is used instead. Also, in my boot files |
have set up a 1360x768p60hz resolution for Android
and Ubuntu since that is the max resolution of my
displays. You may need to change this resolution to fit

https://www.debian.org/CD/http-ftp/#stable
https://ubuntu-mate.org/download/
https://bit.ly/2Hs1obf
https://bit.ly/2ZnJwbL
https://bit.ly/2Nxxczg
https://bit.ly/2Nwt4zr
https://bit.ly/30zIrLp
https://bit.ly/324hcJi
https://bit.ly/30yAI04

your display. If you made it this far, congratulations,
you now have a multiboot image featuring the three
most popular operating systems in this world. If, for
some reason, something goes wrong before, during,
or after the installation process, let me know it here:
https://bit.ly/2zic1Jk. | can take a look at the problem
and try to address it.

Known issues
After a Ubuntu full upgrade

apt upgrade -y; apt dist-upgrade -y

these files: Image, meson64_odroidc2.dtb and ulnitrd
are updated outside of the multiboot directory. All
you have to do is go to the boot partition: emuserdata
on eMMC modules or sduserdata on SD cards,
append .linux to the file names (example: Image.linux)
and move them to the multiboot directory (you can
overwrite them).

Lastly, | want to thank @loboris, @odroid,
@dimitris_c, @barturblits, @luffyman, @sdip and
@malomehi from ODROID Forum for making this
possible. | am honored to be part of this community

and do my best to make it better.

https://bit.ly/2zic1Jk

