

How to Install Emby on the ODROID-XU4
 March 1, 2020

With a small form factor and low price point, development boards are excellent
network-attached storage (NAS) devices. One of my favorite home server hardware
options for a do-it-yourself (DIY) NAS is the ODROID-XU4. In this article, I can show how

one can install Emby Media Server on the ODROID-XU4 treating

ODROID-XU4 Plex Media Server Installation
 March 1, 2020

Plex can be thought of as a DIY (do-it-yourself) Net�ix. Whereas Net�ix, for instance,
lets you stream content from its servers, Plex allows you to take your (legally obtained)
digitized media such as movies, TV shows, music �les, and pictures, then access them

on compatible client devices like phones, tablets,

Home Assistant: Automate Your House With Your ODROID-N2
 March 1, 2020

Home Assistant (HA) is a home automation operating system with a focus on local
control and privacy. HA includes a custom operating system, HA Core, to run the home
automation operations and a supervisor to manage everything, keeping it up to date.

How To Assemble The ODROID-GO Advance
 March 1, 2020

One of the best features of the ODROID-GO Advance is that you can build it yourself,
since it comes in kit form. This means that you can learn how the pieces �t together,
do it as a project with your siblings, friends, or children, and have the satisfaction of

playing

Arduino for ODROID: Setting up your own Oduino
 March 1, 2020

Generally, Arduino APIs are used with a microcontroller like an Arduino-UNO, esp8266,
etc. These APIs make it easier for people who have used Arduino to control their
ODROID GPIO, so I we developed an Arduino API layer for ODROID.

How To Disassemble The ODROID-GO Advance
 March 1, 2020

Disassembling the ODROID-GO Advance is fairly straightforward

Java Game Development: Creating Fun With Your ODROID
 March 1, 2020

Things You will Need (Use your nearest ODROID supplier) -- ODROID-N2 ~ $60 - $70
ODROID-N2 Case $4 ODROID-N2 Power Supply $6 eMMC (If you choose to use 32GB or
64GB): ~ $27 - $40, or microSD (If you choose to use 16GB, 32GB or 64GB): ~ $8 - $14

Linux Gaming: ODROID-GO Advance
 March 1, 2020

The recently released ODROID-GO Advance has a lot to o�er for ODROID fans, and
retro gaming enthusiasts. The design of the ODROID makes it perfect for retro gaming
and the build in gaming controls are perfect for this purpose. Still, the board itself can

do so much more and we’re

ODROID-GO Advance Operating Systems: An Overview Of The
Currently Available Prebuilt Images
 March 1, 2020

Now that the ODROID-GO Advance has been out for several months, there are some
amazing operating systems that have been ported by the ODROID community.

ZFS Basics: Getting running on the ODROID-H2
 March 1, 2020

ZFS is an advanced �le system with many terri�c features that are not available in
many of the traditional �le systems such as ext4.

The G Spot: Your Goto Destination for All Things That are Android
Gaming: New ODROID-GO Advance Could “Go” Android
 March 1, 2020

Lights, cameras, and ALL action; Hardkernel has a new single board computer (SBC)
portable star, again, and it’s named the ODROID-GO Advance. Targeted as a followup

portable handheld gaming device to the popular ODROID-GO 10th Anniversary ESP32 platform, the new
ODROID-GO Advance is destined to outshine every other SBC game

How to Install Emby on the ODROID-XU4
 March 1, 2020  By Moe Long, www.cupofmoe.com  Linux, ODROID-XU4

Single-board computers (SBCs) such as the Raspberry
Pi might not match up against dedicated server
hardware or even most mainstream desktops.
Nevertheless, the price-to-performance ratio of maker
boards makes these tiny credit card-sized devices
extremely competitive. With a small form factor and
low price point, development boards are excellent
network-attached storage (NAS) devices. One of my
favorite home server hardware options for a do-it-
yourself (DIY) NAS is the ODROID-XU4. In this article, I
can show how one can install Emby Media Server on
the ODROID-XU4 treating it as DIY Odroid NAS!

Why build an ODROID-XU4 NAS?

[NOTE: embed YouTube video at
https://youtu.be/cun9lezarXY]

The ODROID-XU4 comes in a typical unassuming
single-board computer (SBC) form factor. However,
the tiny device hailing from HardKernel sports some
beastly specs, particularly for its size. At the heart of

the ODROID-XU4 is an octa-core processor paired
with a Mali-T628 MP6 GPU with OpenGL ES support.
Additionally, 2GB of DDR3 RAMwill aid with
multitasking and there is an eMMC module, as well as
microSD card slot, for installing a host operating
system. For hooking up external devices, the XU4
rocks a pair of USB 3.0 ports and a solitary USB 2.0
port. Due to its robust processing capabilities, the
ODROID-XU4 is an incredibly powerful little SBC that
masterfully fuses processing capabilities with energy
e�ciency. Also, its low price tag means you can use
the ODROID-XU4 as a DIY NAS device that will not
break the bank. You would want to build an ODROID-
XU4 based NAS for the following reasons:

A�ordability,

Octa-core processor (CPU),

Ability to run numerous Linux distros, and

Its energy-e�ciency

Why use Emby?

https://youtu.be/cun9lezarXY

The Emby media-server is a great Plex alternative. It is
one of the best media server software options
available for the ODROID-XU4. An excellent Plex
alternative, Emby allows you to stream your personal
media collection such as movies, TV shows, music,
and even photos to compatible client devices like
phones, tablets, streaming boxes, and smart TVs.
Similar to Plex, Emby is really easy to use. However, a
robust feature set posits Emby as a better option for
power users. Its metadata editing functionality allows
you to input correct metadata information. You can
add your own custom CSS to the Emby web app to
perform actions such as altering the login screen and
even deploy custom themes. There is live TV and DVR
functionality and local streaming.

Unfortunately, Emby restricts local streaming more so
than Plex. For instance, while Plex local network
streaming works without a premium Plex Pass, many
apps require an app unlock, like Android TV, when
using Emby. Nevertheless, Emby is a Plex competitor
worth considering and it runs like a champ on SBCs
such as the ODROID-XU4.

How to Install Emby Media Server?

Thankfully, spinning up an Emby media server on an
ODROID-XU4 SBC is cost-e�ective and easy to setup.
You will need an ODROID-XU4 or the passively-cooled
ODROID-XU4Q. Also, you will need a case, power
supply, microSD card or eMMC module for an
operating system installation, and a Linux-based
distribution (distro) such as Ubuntu. Of course, you
will have to install Emby Media Server. This project
requires an active internet connection, peripherals
such as a keyboard and mouse, as well as your
personal media like movies, TV shows, and music
�les. It is easiest to keep these stored on an external
device such as a �ash drive or harddrive, although
you can load them on a microSD card or eMMC where
your host OS is installed. There are numerous Linux
distros compatible with the ODROID-XU4. I suggest
running a Debian-based distro such as Debian itself,
Ubuntu, Ubuntu MATE, Armbian, or DietPi. You could
also use OpenMediaVault.

ODROID-XU4 Emby Media Server requirements:

ODROID-XU4 or passively-cooled Odroid XU4Q

microSD card or eMMC module

Linux distro (i.e. Debian, Armbian, Ubuntu, Ubuntu
MATE, DietPi)

Emby Media Server software

Media collection (movies, TV shows, music, photos)

External storage device

Peripherals (keyboard, mouse)

Active internet connection

Emby client device (i.e. PC, smart TV, Roku, Android TV
box, smartphone/tablet, etc.)

Total cost: About US$62. Normally, the ODROID-XU4
retails for around $62. You can snag one from the
likes of Ameridroid, sometimes with some discounts.
Any extras will cost more. For a self-contained NAS,
check out the ODROID-XU4 and ODROID-XU4Q
compatible ODROID-CloudShell2 which features
support for up to two 3.5" HDDS or SSDs.

Install Emby Media Server

Assume you have a Debina-based OS installed on the
ODROID-XU4. First run an update:

$ sudo apt-get update && apt-get upgrade

Then, install the Emby Media Center. Since it is an
Armv7 (armhf) board, you will need to download the
appropriate Armv7 DEB (https://emby.media/linux-
server.html) �le on Debian. With that downloaded,
install it using (for a newer DEB version, replace
emby-server-deb_4.3.1.0_armhf.deb with the current
version):

$ dpkg -i emby-server-deb_4.3.1.0_armhf.deb

If you are running CentOS on the Odroid XU4, you will
need to install the Armv7hl Emby app (check the most
current version and replace 4.3.1.0/emby-server-
rpm_4.3.1.0_armv7hl.rpm with that if necessary):

$ yum install

https://github.com/MediaBrowser/Emby.Releases/rele

ases/download/4.3.1.0/emby-server-

rpm_4.3.1.0_armv7hl.rpm

If you are running Fedora on the ODROID-XU4, you
will need the Armv7hl �le (you may need to swap
4.3.1.0/emby-server-rpm_4.3.1.0_armv7hl.rpm for the
most recent RPM):

https://emby.media/linux-server.html

$ dnf install

https://github.com/MediaBrowser/Emby.Releases/rele

ases/download/4.3.1.0/emby-server-

rpm_4.3.1.0_armv7hl.rpm

To run Emby on OpenSUSE with the XU4, run
(however, you might need to replace 4.3.1.0/emby-
server-rpm_4.3.1.0_armv7hl.rpm with the latest RPM):

$ zypper install

https://github.com/MediaBrowser/Emby.Releases/rele

ases/download/4.3.1.0/emby-server-

rpm_4.3.1.0_armv7hl.rpm

With DietPi (a great Debian-based Linux distro that
features a modular installation) installed, enter the
command:

$ dietpi-software

You will see the DietPi-Software center. Head to
Software Optimized > Emby Server and press
spacebar to select it. Click tab to press ok, now shit
install and click ok. You will be prompted to select if
you want to install Emby Server on DietPi, so pick ok.

Add Your Media to Emby

[Fig 01]

Once Emby is installed on the ODROID-XU4, you can
add your media. By default, Emby uses the port 8096.
On your Odroid XU4, head to http://localhost:8096.
Or, if you are using a di�erent computer on the same
network as your XU4 board, enter
ODROID_IP_ADDRESS:8096 where
ODROID_IP_ADDRESS is the address of your ODROID-
XU4.

[Fig 02]

At the friendly Emby Media Server setup screen, pick
your preferred language then choose a username and
password. After that, con�gure your media libraries.
Hit Add Media Library and pick a content type such as
Movies, TV Shows, or Music. Now, pick a display name
like Movies and hit the plus (+) sign beneath folders to
add appropriate media. Con�gure metadata
download information and your country. Now, choose
ok and if all is properly con�gured, hit next. Repeat
this process for every content type, then save.

Odroid XU4 NAS Performance with Emby

[Fig 03 - Groundhog Day]

I found that the ODROID-XU4 was more than capable
of transcoding a single 1080p �le alongside a 480p
�le. Or, you can transcode around four to �ve
simultaneous 480p �les. For local streaming, I tested
four concurrent 1080p �les, but you might be able to
run more than that. Regardless, it is a major step up
over even the Raspberry Pi 4. On a Pi 4, direct play
was �ne, but transcoding was completely out of the
question.

Should You Build an Odroid XU4 NAS with
Emby Media Server?

For an inexpensive, high-performing media server,
the ODROID-XU4 is a worthy SBC. It is capable of
transcoding and, while it pales in comparison to my
Xeon-powered ThinkServer TS140 which can handle

four simultaneous 1080p transcodes, it cost a fraction
of the price. The fact that a sub-$100 board can
handle transcoding at all is mind-blowing. Overall, the
ODROID-XU4 continues to impress. I have enjoyed
retro gaming emulation on the ODROID-XU4, and as a
home server, the ODROID-XU4 truly excels.

This article originally appeared on Electromaker.io at
https://www.electromaker.io/tutorial/blog/how-to-

install-emby-on-odroid-xu4.

References

https://youtu.be/cun9lezarXY https://emby.media/
https://bit.ly/37UC08t https://bit.ly/2HQSAeI
https://www.electromaker.io/tutorial/blog/emby-
server-raspberry-pi https://bit.ly/2HRas9j
https://emby.media/linux-server.html

https://www.electromaker.io/tutorial/blog/how-to-install-emby-on-odroid-xu4
https://www.electromaker.io/tutorial/blog/how-to-install-emby-on-odroid-xu4
https://youtu.be/cun9lezarXY
https://emby.media/
https://bit.ly/37UC08t
https://bit.ly/2HQSAeI
https://www.electromaker.io/tutorial/blog/emby-server-raspberry-pi
https://bit.ly/2HRas9j
https://emby.media/linux-server.html

ODROID-XU4 Plex Media Server Installation
 March 1, 2020  By Moe Long, www.cupofmoe.com  ODROID-XU4, Tutorial

The ODROID-XU4 is an amazing single-board
computer (SBC), and one of the best Raspberry Pi
alternatives on the market. Due to its horsepower, it
functions better than a Raspberry Pi for a variety of
applications including retro gaming emulation.
Notably, the ODROID-XU4 with its octa-core ARM
processor can handle media transcoding pretty well,
particularly for its modest size. Find out how to make
an Odroid NAS, and whip up your own ODROID-XU4
Plex media server!

What is Plex and Why Should You Use it?

Plex can be thought of as a DIY (do-it-yourself) Net�ix.
Whereas Net�ix, for instance, lets you stream content
from its servers, Plex allows you to take your (legally
obtained) digitized media such as movies, TV shows,
music �les, and pictures, then access them on
compatible client devices like phones, tablets, smart
TVs, and streaming devices.

However, since its inception, Plex added a slew of
cord-cutting features, thereby making it a one-stop-
shop for media consumption. In addition to its media
server capabilities, Plex now o�ers web shows, a
podcast downloader, Tidal integration, plus free, legal,
ad-supported streaming movies and TV shows. There
is also the ability to hook up an over-the-air (OTA)
antenna for live TV and DVR functionality.
Nevertheless, Plex remains focused on its core media
server purpose. The rest of its functionality is merely
to further appeal to cord cutters, and at that Plex
handily succeeds. It is a great way to spin up a media
server for streaming your backed up DVDs and Blu-
rays, CDs and vinyl, as well as photos to virtually any
device you can �nd.

What is Plex media server: A media server software
option for streaming your movies, TV shows, music,
and photos to compatible client devices.

Why Build an ODROID NAS with an
ODROID-XU4?

There are numerous SBCs on the market. And the
ODROID-XU4 remains a top contender. With Samsung
Exynos5422 Cortex™-A15 2Ghz and Cortex™-A7 Octa-
core CPUs and a Mali-T628 MP6 GPU, as well as 2GB
of DDR3 RAM, the ODROID-XU4 packs quite a
performance punch into its unassuming form factor.
Furthermore, eMMC module support in addition to a
microSD card slot lends versatility for operating
system (OS) installation. With two USB 3.0 hosts,
hooking up external drives such as a �ash drive or
external HDD is a breeze. The extra throughput and
read/write speeds from its USB 3.0 ports will lend an
extra boost to its media server functionality.

Octa-core processing

eMMC and microSD card slots

2 x USB 3.0 hosts

Gigabit Ethernet

Plex Install - Build an ODROID-XU4 Plex
Server

You can spin up an ODROID-XU4 Plex server pretty
easily. For this, you can use pretty much any Linux
distribution (distro) such as Raspbian, Ubuntu, or
another Debian-based OS. Alternatively, other Linux
OSes will work just �ne such as DietPi.

You can install Plex in Ubuntu, Raspbian, Armbian, or
another Debian-based Distro.

Before proceeding to install Plex, you should run an
update:

$ sudo apt-get update && apt-get upgrade

Next, install Plex Media Server for armhf/arm64. For
this, you'll need to become root:

$ sudo su

Now add the public key:

$ wget -O - https://dev2day.de/pms/dev2day-

pms.gpg.key | apt-key add -

After that, add the Plex Media Server repository:

$ echo "deb https://dev2day.de/pms/ stretch main"

>> /etc/apt/sources.list.d/pms.list

With the Plex Media Server repo added, go ahead and
activate HTTPS:

$ apt-get install apt-transport-https

Then, perform a repo update:

$ apt-get update

When that is �nished, install Plex for the ODROID-
XU4:

$ apt-get install plexmediaserver-installer

You should now have Plex running on the ODROID-
XU4.

ODROID-XU4 Plex Server Set-Up

Since Plex media server has been installed on your
Odroid board, you will now need to con�gure your
server software and add your media. In a web
browser, navigate to localhost:32400/web/. Or, if you
are using a remote PC, enter
YOUR_XU4_IP:32400/web/ where YOUR_XU4_IP is
your ODROID-XU4 board's IP address. You can check
your IP address using the command line:

$ hostname -I

You will need to perform some basic set up such as
creating a Plex account and naming your server. Once
you have logged in and picked out a name, hit Next.
Then, select the location of your media. I used an
external harddrive full of media. Hit Add Library, then
choose the library type i.e. movies, TV shows, music,
photos, or other videos. Locate the appropriate folder
or folders containing your media. Repeat this for each
content type, and when you are all done, proceed to
the main Plex dashboard.

Odroid NAS Performance - Running Plex on the
ODROID-XU4

[Fig 01]

I have run Plex on a ton of di�erent devices, from my
Xeon-powered ThinkStation TS140 server to the
Raspberry Pi 4. Particularly for a SBC, the ODROID-
XU4 is a beast for Plex use. Plex transcoding actually
works on the ODROID-XU4, at least for a single 720p
or 1080p transcode. Direct play, no transcoding, the
ODROID-XU4 can tackle �ve simultaneous 1080p
streams, an impressive feat from such a small board.
Indeed, it's a tiny but mighty maker board.

[Fig 02]

With an a�ordable price point, the XU4 blows many
other SBCs out of the water. As a NAS device, the
ODROID-XU4 is a superb consideration. Add a

CloudShell2 NAS Kit and you can cobble together a
DIY NAS with room for two 2.5" HDDs or SSDs. There
is even a USB 3.0 to SATA bridge for UAS and RAID
compatibility. As such, you can build a completely self-
contained Plex media server with the ODROID-XU4.

Plex Media Server Odroid XU4 NAS - Final
Thoughts

[Fig 03]

While there is de�nitely more powerful server
hardware available, it is tough to beat the price-to-
performance ratio of the Odroid XU4. There is a pretty
solid community, and Plex is well-supported. What is
most impressive is the XU4's ability to tackle
transcoding. Admittedly, it is not able to muster
multiple simultaneous 1080p transcodes. However,
the Raspberry Pi 4 cannot even handle a single
transcode, though non-transcoding is awesome on
the Pi 4 which can stream four simultaneous 1080p
direct play �les. Overall, the ODROID-XU4 makes an
ultra-a�ordable, shockingly competent NAS.

References

https://bit.ly/2vaamae https://bit.ly/2T7LojL

https://bit.ly/2vaamae
https://bit.ly/2T7LojL

Home Assistant: Automate Your House With Your ODROID-N2
 March 1, 2020  By Pascal Vizeli  ODROID-C2, ODROID-XU4

Home Assistant (HA) is a home automation operating
system with a focus on local control and privacy. HA
includes a custom operating system, HA Core, to run
the home automation operations and a supervisor to
manage everything, keeping it up to date.

[Fig 01]

It is the most prominent open-source home
automation platform worldwide, with over 80,000
active installations and it is translated into 57
di�erent languages. HA was listed in the top 10 most
active projects on GitHub in 2019. Every 3 weeks, a

new release is built with contributions of over 80
di�erent people. The project is �nanced by the HA
Cloud provided by Nabu Casa, Inc. This is a
subscription service o�ering features like an end-to-
end encrypted connection to the home, without any
con�guration on the user side. HA is growing very
fast, and there are a handful of full-time developers
that work on this project together with the
community, which helps to support the 1550 di�erent
integrations that HA supports.

[Fig 02]

The HA Operating System supports a wide range of
platforms. From a Virtual Appliance up to various SoC
Boards. When the operating system started, three
years ago, the idea was to support as many SoCs as
possible. However, we soon realized that not every
hardware results in a good user experience of the
next-gen smart home hub. We now focus on the SoCs
that provide the desired user experience, are
prominent and easy to get for the �rst taste of HA. We
have ready-to-use images for each supported
platform. To get started, you need to �ash our image
with Etcher to an SD card or eMMC. This is a one-time
process; once up and running, you can use OTA
updates via the user or command-line interface. In
the upcoming release of HA OS 4 (short REL-4), we
worked hard to improve our support for the ODROID-
C2 and ODROID-XU4 boards, and we are also adding
support for the ODROID-N2. It is using the mainline
Linux kernel (LT 5.4) and u-boot (2020.01) with some
backported device-tree �xes from Linux 5.5 and a u-
boot �x to adjust the MAC address of the internal
ethernet port. Amlogic S922X, S922D, and A311D are
the perfect SoCs for the Next-Gen smart home hub.
ODROID-N2 is using the S922X, which makes it an
ideal device to run HA on. Our operating system
started its life named Hass.io, as a fork of ResinOS.
ResinOS uses Yocto to create an embedded Linux
system, however, ResinOS values didn’t align with our
“local control and privacy �rst”. Yocto was tough to
maintain for all the di�erent platforms for a small
project with limited resources like ours. This leads us

to create the HA OS with the focus on local control
and privacy �rst, built from scratch using Buildroot,
powered by our previous experience. Buildroot has
helped to simplify everything and made the project
easier to maintain by our community. The only goal of
the OS is to provide anything that is required to run
the Supervisor. This includes things like Docker,
NetworkManager, Dbus, AppArmor, and Systemd. We
optimized the operating system to have a small
footprint by leveraging ZRAM and LZ4/SquashFS to
compress the root �le system and device memory.
The Supervisor is the brain of the system and runs
inside a Docker container. It manages the host
functionality, Docker orchestration, and locally
attached Hardware. The Supervisor streamlines this
into an API, which is consumed by our user interface.
The Supervisor allows spinning up additional
software, using Docker containers with extended
wrapping, called add-ons. HA comes preinstalled with
its own collection of add-ons and a collection
provided by the community. It is also possible to add
additional add-on repositories to the built-in add-on
store. This functionality makes it possible to install the
Mosquitto MQTT broker, Node-RED, VSCode, and
many other software packages with a simple click. An
internal network and service layer ensures a seamless
user experience by integrating user interfaces
provided by add-ons, into the HA user interface.

[Fig 03]

On top of the Supervisor lives HA Core, HA Core is
responsible for collecting the data, providing control
and home automation. It is the ultimate home
automation software, virtually capable of integrating
with anything with the, over 1550, integrations it

provides. All these pieces combined makeup HA,
which is free and open-source, and built by a great
community. Get yourself an ODROID-N2, install HA

and join the HA universe at https://www.home-
assistant.io!

https://www.home-assistant.io/

How To Assemble The ODROID-GO Advance
 March 1, 2020  By Justin Lee, CEO of Hardkernel  ODROID-GO Advance, Tinkering, Tutorial

One of the best features of the ODROID-GO Advance
is that you can build it yourself, since it comes in kit
form. This means that you can learn how the pieces �t
together, do it as a project with your siblings, friends,
or children, and have the satisfaction of playing
games on a truly unique device that you built
yourself!

To assemble the ODROID-GO Advance, unpack all of
the parts and verify them against Figure 1. Be gentle
when attaching cables to the PCB, and make sure not
to over-tighten any of the screws. Read through all of
the instructions, and watch the video, before starting.

Figure 1 - ODROID-GO Advance kit annotated parts
diagram

(Figure 1 - ODROID-GO Advance kit annotated parts
diagram)

A USB Type-A
Power Cable

J D-PAD
rubber

B Front
enclosure

K A, B, X, Y
button
rubber

C Back
enclosure

L battery
sticker

D Plastic L/R M Analog

trigger, X, Y,
power
Buttons

joystick

E Plastic D-
pad, A, B
Buttons

N 320×480 TFT
LCD

F ODROID-
GO-Advance
board

O 0.5W
speaker

G 3000mAh
battery

P 1.7×5 screws
7pcs

H LCD window Q 1.7×8 screws
4pcs

I I ~ VI button
rubber

R Screw driver

Build Instructions

The video at https://youtu.be/FsfpAkKGEXc shows
detailed instructions on how to use the kit, and
should be used in conjunction with the instructions
here to ensure that everything is assembled properly.

LCD assembly

Figure 2 - Fold the yellow tab as shown

Figure 3- Closeup of LCD panel insertion

Figure 4 - Closeup of the yellow tab

Figure 5- Insert the LCD panel as shown

Figure 6- Closeup of LCD panel insertion

Figure 7 - Closeup of LCD panel insertion

Figure 8 - Closeup of LCD panel insertion

Figure 9 - Closeup of LCD panel insertion

Figure 10 - Closeup of LCD panel insertion

Figure 11 - Closeup of LCD panel insertion

Inserting the LCD

Figure 12 - Make sure that the yellow tab is in front of
the enclosure

Figure 13 - Closeup of the LCD panel insertion

Figure 14 - Carefully remove the backing of the double-
sided tape, remove the LCD protective cover by pulling
on the yellow tab, and carefully attach the LCD
protector with the exposed double-sided tape

Figure 15 - Closeup of removing the double-sided tape

Figure 16 - Closeup of removing the double-sided tape

Figure 17 - Closeup of removing the double-sided tape

Figure 18 - Closeup of removing the double-sided tape

Figure 19 - Closeup of removing the double-sided tape

Figure 20 - Closeup of removing the double-sided tape

For alternative assembly instructions for the LCD
panel, check out the video at
https://youtu.be/ShFrKvPcjsE. Analog joystick
assembly

Figure 21 - Assemble the analog joystick with 1.7 x 5mm
screws, making sure not to over-tighten the screws

Figure 22 - Closeup of attaching the analog joystick

Figure 23 - Closeup of attaching the analog joystick

Button assembly

Figure 24 - Put the D-pad and buttons on the front
enclosure

Figure 25 - Closeup of attaching the buttons

Figure 26 - Closeup of attaching the buttons

Figure 27 - Closeup of attaching the buttons

Figure 28 - Closeup of attaching the buttons

Figure 29 - Closeup of attaching the buttons

Figure 30 - Assemble the power button

Figure 31 - Insert the rubber buttons into the enclosure

Figure 32 - Closeup of inserting the rubber buttons

Speaker assembly

Figure 33 - Insert the speaker into the front enclosure

Figure 34 - Closeup of speaker assembly

Figure 35 - Closeup of speaker assembly

PCB board assembly

Figure 36 - Put the ODROID-GO Advance PCB in the front
enclosure

Figure 37 - Insert the 1.7 x 5mm screws

Figure 38 - Connect the LCD, joystick, and speaker cables
to the PCB

Note: never raise the joystick connector more than 90
degrees or it will break.

Figure 39 - Closeup of attaching the PCB connections

Figure 40 - Closeup of attaching the PCB connections

Figure 41 - Closeup of attaching the PCB connections

Figure 42 - Closeup of attaching the PCB connections

Figure 43 - Closeup of attaching the PCB connections

Figure 44 - Closeup of attaching the PCB connections

Figure 45 - Closeup of attaching the PCB connections

Figure 46 - Closeup of attaching the PCB connections

Figure 47 - Closeup of attaching the PCB connections

Figure 48 - Closeup of attaching the PCB connections

Figure 49 - Closeup of attaching the PCB connections

Figure 50 - Closeup of attaching the PCB connections

Figure 51 - Closeup of attaching the PCB connections

Battery assembly

Figure 52 - Stick the dual-sided tape on the battery

Figure 53 - Close of the battery tape

Figure 54 - Connect the battery to the ODROID-GO
Advance

Figure 55 - Connect the battery to the ODROID-GO
Advance

Trigger buttons assembly

Figure 56 - Insert the trigger button keys into the slots,
making sure to align them to the left and right side as
indicated on the button

Figure 57 - Close of trigger button keys

Back enclosure assembly

Figure 58 - Stick the battery on the back enclosure

Figure 59 - Closeup of battery attachment

Figure 60 - Closeup of battery attachment

Figure 61 - Close the back enclosure

Figure 62 - Press the hook with your �nger until it makes
a snapping sound

Figure 63 - Closeup of attaching the enclosure

Figure 64 - Closeup of attaching the enclosure

Figure 65 - Closeup of attaching the enclosure

Figure 66 - Closeup of attaching the enclosure

Figure 67 - Closeup of attaching the enclosure

Figure 68 - Closeup of attaching the enclosure

Figure 69 - Closeup of attaching the enclosure

Figure 70 - Assemble the back enclosure with the 1.7 x
8mm screws, being careful not to over-tighten them

Figure 71 - ODROID-GO Advance fully assembled

For more information, please visit the original Wiki
article at
https://wiki.odroid.com/odroid_go_advance/go_adv_
assembling.

https://wiki.odroid.com/odroid_go_advance/go_adv_assembling

Arduino for ODROID: Setting up your own Oduino
 March 1, 2020  By @tony.hong  Tutorial

Generally, Arduino APIs are used with a
microcontroller like an Arduino-UNO, esp8266, etc.
These APIs make it easier for people who have used
Arduino to control their ODROID GPIO, so I developed
an Arduino API layer for ODROID.

There is no need to install Arduino IDE on your PC and
you don’t need to connect the PC to your ODROID;
just install Arduino IDE and some dependencies into
ODROID and write code. When you upload the code,
ODROID runs the code on its own. The GitHub
repository is located at
https://github.com/hhk7734/oduino.

[NOTE: embed the video at
https://youtu.be/1Tk�0pTRZ0]

Installation

First install the currently supported Ubuntu MATE
desktop. The installation guide is available at
https://wiki.odroid.com/getting_started/os_installati
on_guide.

Download the latest Arduino IDE for ARM Linux from
https://www.arduino.cc/en/Main/Software. The
Arduino installation guide is available at
https://www.arduino.cc/en/Guide/Linux

Arduino for ODROID

Open a terminal, copy and paste the command into
terminal, and type the following commands:

sudo apt update && sudo apt install -y git && git

clone --recursive

https://github.com/hhk7734/oduino.git

~/Arduino/hardware/hardkernel/odroid && sudo

~/Arduino/hardware/hardkernel/odroid/tools/install

.sh

If you already opened an Arduino IDE, close it and
reopen the IDE.

odroid-con�g

Odroid-con�g is a utility that helps users con�gure for
ODROID easily. The code is available at the following

https://github.com/hhk7734/oduino
https://youtu.be/1Tkff0pTRZ0
https://wiki.odroid.com/getting_started/os_installation_guide
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/Linux

Github repo: https://github.com/hhk7734/odroid-
con�g

Arduino IDE Setup

Tools -> Board -> ODROID Series

Tools -> Port -> /dev/ttyHK0

Tools -> Programmer -> Bridge

Pinmap

Arduino for ODROID uses a physical location based
pinmap. If you have ODROID-N2, the pinmap is shown
in the following table.

+---------+------+---+--- N2 ---+---+------+------

---+

| Name | Mode | V | Physical | V | Mode | Name

|

+---------+------+---+----++----+---+------+------

---+

| 3.3V | | | 1 || 2 | | | 5V

|

| SDA.2 | ALT1 | 1 | 3 || 4 | | | 5V

|

| SCL.2 | ALT1 | 1 | 5 || 6 | | | 0V

|

| IO.473 | ALT1 | 0 | 7 || 8 | 1 | IN | TxD1

|

| 0V | | | 9 || 10 | 1 | IN | RxD1

|

| IO.479 | IN | 1 | 11 || 12 | 1 | IN |

IO.492 |

| IO.480 | IN | 1 | 13 || 14 | | | 0V

|

| IO.483 | IN | 1 | 15 || 16 | 1 | IN |

IO.476 |

| 3.3V | | | 17 || 18 | 1 | IN |

IO.477 |

| MOSI | IN | 1 | 19 || 20 | | | 0V

|

| MISO | IN | 1 | 21 || 22 | 1 | IN |

IO.478 |

| SCLK | IN | 1 | 23 || 24 | 1 | IN | CE0

|

| 0V | | | 25 || 26 | 0 | IN |

IO.464 |

| SDA.3 | ALT2 | 1 | 27 || 28 | 1 | ALT2 | SCL.3

|

| IO.490 | IN | 1 | 29 || 30 | | | 0V

|

| IO.491 | IN | 1 | 31 || 32 | 0 | IN |

IO.472 |

| IO.481 | IN | 1 | 33 || 34 | | | 0V

|

| IO.482 | IN | 0 | 35 || 36 | 0 | IN |

IO.495 |

| AIN.3 | | | 37 || 38 | | | 1V8

|

| 0V | | | 39 || 40 | | | AIN.2

|

+---------+------+---+----++----+---+------+------

---+

| Name | Mode | V | Physical | V | Mode | Name

|

+---------+------+---+--- N2 ---+---+------+------

---+

Blink Example

Arduino IDE -> File -> Examples -> 01.Basics -> Blink

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

 digitalWrite(LED_BUILTIN, HIGH);

 delay(1000);

 digitalWrite(LED_BUILTIN, LOW);

 delay(1000);

}

By default, the Arduino-UNO connects the D13 to the
LED. So the constant expression: int LED_BUILTIN =
13; is declared. Connect the LED to the 13-pin and
upload the example code and the LED will blink.

An additional I2C ODROID example is available at
https://medium.com/@hhk7734/how-to-use-i2c-lcd-
on-odroid-eaf20d20966c. For more information,
please see the ODROID forum thread posting at
https://forum.odroid.com/viewtopic.php?
f=180&t=37713.

https://github.com/hhk7734/odroid-config
https://medium.com/@hhk7734/how-to-use-i2c-lcd-on-odroid-eaf20d20966c
https://forum.odroid.com/viewtopic.php?f=180&t=37713

How To Disassemble The ODROID-GO Advance
 March 1, 2020  By Justin Lee, CEO of Hardkernel  ODROID-GO Advance, Tinkering, Tutorial

Disassembling the ODROID-GO Advance is fairly
straightforward, and involves removing the screws
from the outer case and carefully pulling apart the
front and back pieces. However, during this process,
one of the components is vulnerable to breakage if
done imprecisely.

Figure 1 - SW15 can easily be bent during disassembly if
care is not taken

Figure 2 - The SW15 component can also become
separated from the board during disassembly

Figure 3 - The SW15 component can also become
separated from the board during disassembly

Figure 4 - Another view of the board with SW15
accidentally removed

To prevent SW15 from breaking during disassembly
of the OGA, please follow the instructions shown in
the video at https://youtu.be/bUC-s6KQFpo and take
it apart very carefully. For more information, please
visit the original Wiki article at
https://wiki.odroid.com/odroid_go_advance/go_adv_
disassembling.

Figure 5 - ODROID-GO Advance disassembly video

https://youtu.be/bUC-s6KQFpo
https://wiki.odroid.com/odroid_go_advance/go_adv_disassembling

Java Game Development: Creating Fun With Your ODROID
 March 1, 2020  By Brian Ree  Development, Gaming, ODROID-N2

Things You will Need (Use your nearest ODROID
supplier) --

ODROID-N2 ~ $60 - $70

ODROID-N2 Case $4

ODROID-N2 Power Supply $6

eMMC (If you choose to use 32GB or 64GB): ~ $27 -
$40, or

microSD (If you choose to use 16GB, 32GB or 64GB): ~
$8 - $14

microSD to USB Adapter: $11

eMMC to USB Adapter: $10

WIFI Modules (Module 0, 4 or 5A - If you do not have a
wired internet connection): ~ $5 - $8

Tinkering Kit (Breakout breadboard, LEDs, Jumpers,
Buttons, Resistors): $16

USB Mouse and Keyboard

HDMI Monitor or TV

HDMI Cable

Internet Connection

Introduction and Tutorial Goals

Have you ever wanted to make your own video
games? Well you have come to the right place. This
tutorial series will show you how to make your own
games at a very low cost to you. You can develop
them and play them on your own little computer, the
awesome ODROID-N2. Wait there is more! You will
also gain experience working with Linux, setting up a
single board computer, writing code in Java, working
with IDE's, and accessing general purpose IO pins to
actually control your game. Yes, you heard right, this
tutorial series will show you how to control your own
game using a breadboard, jumpers, and some
switches. Now I know there are a lot of di�erent game
APIs out there, and powerful game development tools
like Unity, but often, beginners have to not only learn
about video game programming, but also how to
program in general, and then also learn how to use
the game development tool. That is a lot to learn and
can be a bit daunting. Fortunately there are many

aspects of game development that are almost
universal; like game loops, managing graphics and
game resources. Even IDEs are becoming more and
more ubiquitous and o�er many of the same features
and very similar interfaces for software development.
This tutorial series will assume you know nothing
about coding and show you how to start from the
ground up for building your own development box,
con�guring it, and writing your own code. Now that is
a lot to take in, and a lot to cover so we will be doing a
little bit of instruction inside each tutorial. We will not
go into a lot of depth on certain subjects. For instance,
I will be showing you some code and showing you
how to use it and run it but I will not go into depth on
the Java programming language, that could take up a
whole book on it's own. I will, however, give you some
starting knowledge and you can go o� on your own
and research certain topics as you see �t. Well that is
the gist of it, let’s get started.

Review of the things you will need

Now there are a lot of options for con�guring your
ODROID-N2 so we will go over what we recommend
and also what other con�gurations are acceptable.
The low end con�guration we recommend will cost
around $120 not including shipping. The higher end
con�guration will cost around $140. You will need an
HDMI monitor or TV to use with your ODROID-N2
development box and a mouse and keyboard. You
can use any old USB mouse and keyboard.
Con�guration 1: This is the recommended
con�guration because of the stability and speed
o�ered by eMMC modules. We recommend using a
decent sized eMMC module as the operating system
boot memory module and using a microSD card for
�le backups and storage. There are links above to
di�erent sized eMMC modules and microSD cards.
You can also choose between an ODROID-N2 with
2GB or 4GB of RAM. The 2GB version will run �ne but
if you want to go all out the 4GB version can only be
an improvement. We recommend using at least a
32GB eMMC module as the OS boot memory module
and having anywhere from 16GB to 64GB of backup
storage in the form of a microSD. Con�guration 2:
This con�guration will work �ne but doesn't have the
performance and stability bene�ts o�ered by using

an eMMC module. In this setup you would use one
microSD card as both the boot memory module and
for all �le storage. If you go this route we recommend
you buy a second microSD card to backup your �les
to and get a microSD to USB converter so that you
can access the �les on any computer and the
ODROID-N2 itself. There is a mention at the top of the
page for a really great ODROID-N2 case available from
Hardkernel. I would think about getting 2 of them. We
will be accessing the GPIO pins on the ODROID-N2
board and you have the option to open an access port
on the case for easy access to the pins. However, you
may want to keep the device completely closed in
certain situations and having a second case will allow
you to easily change tops so you can use o6ne for
GPIO and the other to keep the device fully closed
and protected. So for less than $150 you will have a
fully functional Linux based computer to use as a
development box for games, if you have an HDMI
screen/TV and a USB mouse and keyboard. If you
need to buy those remaining parts the price will vary
but you can certainly be developing for under $350 if
you shop around for a great price on a screen/TV. OK,
so now that we have that part out of the way let us
get started setting up the operating system on the
eMMC module or microSD card. I will provide
instructions for MS-Windows, Mac, and Linux for each
one. It is actually very simple and the process is
almost exactly the same for both. You will need
access to another computer to do this step but I will
also show you how to use your ODROID-N2 to setup a
new eMMC module or microSD card for the ODROID-
N2. If you do not have access to another computer to
prep your eMMC module or microSD card you will
have to buy one of the pre-installed eMMC modules
or microSD cards from Hard Kernel, listed above. We
recommend that you get the 16GB ODROID-N2
microSD card and use it to setup a custom eMMC
module that we will use for this tutorial series. You
can also get the Hard Kernel 16GB microSD card and
use it to setup a larger microSD card as the boot
memory module. With these options you should be
able to get your dev environment up and running
without access to another computer.

Build your ODROID-N2 Computer

In this step we will put together the ODROID-N2 and
get it ready to create our custom boot eMMC or
microSD memory module. Seating the single board
computer and assembling the case is very simple.
This is one of the best case designs I have seen in a
while. You will not be pushing and pulling and hoping
you do not crack some plastic catches at all. Simply
seat the ODROID-N2 on the metal base of the case.
This also acts as a heat sink, ingenious! Gently tighten
up the screws until they are �rmly tight, do not over
tighten them. A good �rm setup is what we're looking
for here. Let us take a look at the case and board.

Figure 1

Next slide on the case front. Make sure you have the
case front plastic guides lined up with the little metal
ridge on the case bottom.

Figure 2

Now if you have opted to purchase two ODROID-N2
cases then you will want to break out the small GPIO
panel on the top of the case's back. This is the longer
case top that has a long "door" on it. This will allow
you to work on the GPIO section of this tutorial with a
protected ODROID-N2. If not, do not worry, we will
just leave the remaining case top o� for now. Be sure
not to have any drinks or cats around your ODROID-
N2 while it's exposed. We recommend that you
purchase a bootable microSD card from Hardkernel

and use it to create the custom Linux OS we will be
using in this tutorial series. When I say custom I only
mean that we can choose which version of Linux OS
images available for the ODROID-N2 we want to use
and we will also get experience building bootable
eMMC modules and microSD cards.

Figure 3

The picture above shows the ODROID-N2 with a
Hardkernel bootable microSD card and the boot
device switch set to the MMC setting. Note that the
MMC setting is used for both eMMC modules and a
microSD card. The board gives higher priority to
eMMC modules than microSD cards. In this way if you
have both setup it will always try to boot the eMMC
module �rst. I'd like to reiterate that we're purposely
creating our own bootable eMMC module or microSD
card because we want to be able to do so any time we
want. Obviously we already have a bootable microSD
card, the one from Hard Kernel, but we're only using it
as a jumping o� point to using the ODROID-N2 for
creating our own bootable media. Now that we have
the computer setup let us �re it up and get into our
Linux desktop. We will be locating and downloading a

speci�c Ubuntu Linux image to write to our eMMC
module or microSD card, whichever path you decide
to take. If you have access to a computer and are not
building your custom boot memory module on the
ODROID-N2 just follow the steps using your favorite
browser and I will be sure to show you how to write to
your storage device of choice on Windows or Mac.

Figure 4

You will need an internet connection for this part. If
you do not have access to an internet cable to plug
into your ODROID-N2 then purchase a WIFI module,
links above, and you should be all set. If you're not
sure which one to get just load up the page for that
product and see what types of WiFi each module
supports. I have found that the cheapest, WiFi Module
0, works just �ne and does not take up a lot of space
around the ODROID-N2's USB ports. Simply plug the
module into an available USB port while you have
your system booted up and running Ubuntu MATE.
You should be able to select the WIFI icon in the top
right corner of the screen. Doing so will give you a list
of available WIFI networks in your local environment.

Figure 5

Select your WiFi network and you will be prompted to
enter in any authentication information required by
the WiFi end point. The screenshot below depicts a
similar prompt you will encounter when connecting to
WiFi.

Figure 6

Now that you have got your internet connection
con�gured, open up a browser and make sure you
can access the internet.

Figure 7

Click the wiki link at the top of the page.

Figure 8

Or you can jump right to the destination by navigating
your browser to the ODROID Wiki
(https://wiki.odroid.com/). Select the ODROID-N2
option from the side navigation bar. Select os_images
then select ubuntu. You should see a list of dates,
click the 20190812. Choose a mirror from the list of
mirror sites, I use the East Coast Mirror
(https://east.us.odroid.in/ubuntu_18.04lts/) because
it is closer to me. Once on the mirror site you will
have to navigate to the ODROID-N2 OS image, click
the ODROID-N2 link.

Figure 9

Next click the ubuntu-18.04.3-4.9-mate-odroid-n2-
20190812.img.xz link. It may take a few minutes for it
to download because it is around 1GB in size so get
up, stretch, walk the dog, feed the cat, or do whatever
it is you want to do to kill a few minutes.

Figure 10

Also, like any good cooking show we have the meal
we are making already prepared so a direct link to the
east coast mirror OS image we want is, ubuntu-
18.04.3-4.9-mate-odroid-n2-20190812.img.xz. Once
your download has completed you may receive a
window popup like the one shown below. This has
something to do with Ubuntu MATE detecting the �le
type and thinking you want to update your current
eMMC module or microSD card.

Figure 11

Select Cancel and close the window behind it so that
you're back at the browser. Now that you have got a
copy of the OS image downloaded it's time to move
onto the next step. Read below to choose your path,
the recommended path has the best performance
and reliability but may be slightly more expensive.
Choose wisely.

https://wiki.odroid.com/
https://east.us.odroid.in/ubuntu_18.04lts/

If you have a bootable Hardkernel microSD and plan to
use an eMMC module (recommended) then proceed to
Section 4.

If you have a bootable Hardkernel microSD and plan to
use a microSD card then proceed to Section 5.

If you have a computer and are building an eMMC
module or microSD card: Follow along with Section 4
for eMMC modules, or Section 5 for microSD cards and
you will �nd information on how to build the boot
memory module using Windows or MacOS at the
bottom of that section.

Setup your ODROID-N2 with an eMMC Module

To prepare for this step you will need your eMMC
module and a Hardkernel eMMC to USB adapter. Lay
your eMMC module down on a dry static free surface
so that the chip side is facing up.

Figure 12

Note the white notch in the corner of the eMMC
module. This will line up on the same side, left or
right, as the white circle (or notch) on the eMMC to
USB adapter. It does not line up with the exact corner
just the side.

Figure 13

Carefully place the eMMC module's little black
connector onto the eMMC to USB adapter's little black
connector. You can kind of roll the eMMC module
onto the adapter and line up the connectors. Gently
press down and the two connectors will gently and
slightly snap together. that is it, you have successfully
mounted the eMMC module onto the adapter. Now
plug your eMMC to USB adapter into your ODROID-
N2, as shown below.

Figure 14

You are now ready to start writing an OS image to the
eMMC module, which we will cover in the next few
steps. Feel free to skip any microSD steps that do not
apply to you. You can always come back and look up
any info you need. I will cover a few di�erent ways to
write the OS image to the memory module using
di�erent environments. The process is the same for
an eMMC module or a microSD card.

Setup your ODROID-N2 with a microSD Card

To prepare for this step you will need your target,
new, bootable microSD card and a microSD to USB
adapter. Simply plug your microSD card into the USB
adapter and then plug the adapter into your ODROID-
N2.

Figure 15

That is it! Now you're ready to start writing an OS
image to your microSD card. I will cover a few
di�erent ways to write the OS image to the memory
module using di�erent environments. The process is
the same for an eMMC module or a microSD card.

Writing to your Memory Module using Linux,
Windows, or Mac

This step will cover writing to your eMMC module or
your microSD card. At this point the process is the
same for both. If you have connected your eMMC
module or microSD card, please eject it. We are going
to get the device in Linux for the memory module and

we want to be able to detect that new device so we do
not accidentally write to our Hard Kernel bootable
microSD card. For this step you are going to need to
open up a terminal. On the top left hand side of the
screen bring up the list of applications, and utilities.
Click on System Tools, then locate the MATE Terminal
program entry as depicted below. Click it and you will
have a terminal window to work with.

Figure 16

In the terminal type the following command:

$ sudo fdisk -l

Note the list of drive devices that are shown. Now
connect your memory module and run the command
again. Note the new entry in the list and write it down
or copy and paste it into a text document. This step
veri�es that we will be writing to the proper memory
module. For the purposes of writing this tutorial let us
assume that the device is dev/sdx. Next we will
unmount the device by using some sweet terminal
commands. Unmount the partitions by running:

$ sudo umount /dev/sdx*

It may give an error saying the disk is not mounted -
that is �ne. Now we will write the contents of the

image �le onto the SD card by running the following
command.

$ sudo dd bs=1M

if=/path/to/file/your_image_file_name.img

of=/dev/sdx

If your �le has a .img.xz extension instead of a .img
extension you can right-click the �le in MATE using
normal �le operations and extract it to a .img �le. You
can also use the following command to do both
operations in one step.

$ sudo xz -d <

/path/to/file/your_image_file_name.img.xz - |

dd of=/dev/sdx

Remember in this case the
/path/to/�le/your_image_�le_name.img.xz or
/path/to/�le/your_image_�le_name.img is the path to
the ubuntu-18.04.3-4.9-mate-odroid-n2-
20190812.img.xz �le we want to write and /dev/sdx is
the device name we �gured out earlier. You can
navigate to where the �le is located using the MATE
desktop. Right-click the window and select the Open
Terminal command to open a terminal at the location
of the target �le. In this case your terminal commands
would be:

$ sudo dd bs=1M if=your_image_file_name.img

of=/dev/sdx

or

$ sudo xz -d < your_image_file_name.img.xz - | dd

of=/dev/sdx

Let the operation run to completion and you will have
a fresh new bootable memory module to use on your
ODROID-N2. What is more you can use these steps to
try di�erent ODROID-N2 operating system images.
Just look around the wiki page (https://bit.ly/3a0xyXe)
for other OS options to try. For our purposes we are
ready to move onto the next step of this tutorial. I will
take a moment to demonstrate other ways to write
the image to the memory module. It is important to
note that the eMMC module and the microSD card
behave the same at this point. Linux just views them
as a memory device to write to.

If you are working on your ODROID-N2 you can use a
gui method to write the image to your memory
module of choice. Once the image �le has �nished
downloading �nd the �le in your Downloads folder
and right-click on it.

Figure 17

Select the Open With Disk Image Writer option. You
should see a window pop-up similar to what is shown
below.

Figure 18

the proper destination to write the image. ALERT: Be
very careful here, make sure you are choosing the
target memory module and not the boot SD card!

Writing an OS Image on a Mac

To write the OS image �le on a Mac we recommend
getting a great piece of free software, Balena Etcher
(https://www.balena.io/etcher/). You could also
probably run the Linux commands listed above in a

https://bit.ly/3a0xyXe
https://www.balena.io/etcher/

terminal on a Mac but let us try something new.
Download and install Balena Etcher. The software
handles writing .img.xz �les so you do not have to
worry about decompressing the OS image. Locate
your OS image �le.

Note: The screenshots below show a di�erent �le
being written then the one we are working with. The
process is the same, no worries.

Figure 19

Next, �re up Balena Etcher and answer any prompts
for higher privileges that might pop up.

Figure 20

Double check that you are indeed �ashing the correct
device and that it is the correct approximate size!!

Figure 21

Start �ashing the device and wait for the process to
complete.

Figure 22

Writing an OS Image on Windows

To write the OS image �le on a Mac we recommend
getting a great piece of free software, Win32 Disk
Imager (https://bit.ly/2VqBCMa). Now if you are
running Ubuntu Linux under Windows 10 you could
also probably run the Linux commands listed above in
a terminal. You could also install the Windows version
of Balena Etcher and follow the directions for that
software listed above. I want to show you a new way
so that you have a bunch of options and tools you can
use to make your own bootable memory modules.
You will have to decompress the .img.xz �le before we
can write it to the memory module. Get a free copy of
7-Zip (https://www.7-zip.org/). Install it and use it to
decompress the .img.xz �le you should have a nice
fresh .img �le in a few minutes.

Once your .img �le is decompressed and ready to use,
open up Win32 Disk Imager and navigate to the .img
�le you want to write to your microSD card. ALERT: Be
sure to select the proper drive letter to write to!! If
you have any doubts just eject the microSD card and

https://bit.ly/2VqBCMa
https://www.7-zip.org/

take note of which drive letters go away. Any card,
especially if it has a bootable OS in it, will mount as
two drive letters. It is ok to simply choose one of
them. The screen shot below shows Win32 Disk
Imager in action, it is being used to write a di�erent
.img �le, just ignore that part.

Figure 23

Once you have everything setup click the Write button
at the bottom of the window and let the software do
its thing. Be careful that you click the correct button. It
can become confusing at times which direction the
read or write operation is going, especially if you have
done a few cards in a row using di�erent operations.
There will be some hint text that will explain what the
button you're about to click does. I always read it and
double check that it is indeed what I want to do.
Con�guring Your Dev Environment Now that we have
created a new custom bootable eMMC or microSD
memory module, whichever you choose, we have to
update the OS and install some software before we
can begin developing. Boot up the ODROID-N2 with
your new memory module and put the Hardkernel
bootable microSD card in a safe place. First let us
update the operating system and software. We will do
this two di�erent ways. The �rst will use the MATE
desktop system tools. Find the Software Updater tool
under Menu -> Administration -> Software Updater.

Figure 23.5

Click the Update button and let the process complete.
Sometimes an update may require you to hit a button
so it's a good idea to keep the window visible and also
have the details visible. You should see a window like
the following while the update is running.

Figure 24

Once that is complete we will run an update from the
command line. This step is more or less the same
thing as what the system update tool is doing but it is
good to know how to run an update from a terminal
so let us do it. Open up the terminal like we did earlier
in the tutorial and run the following commands. The
default superuser password is odroid. Copy and paste
the following command in the terminal window and
hit enter.

$ sudo apt-get update -y; sudo apt-get upgrade -y;

sudo apt-get

autoremove -y;

Once that is done we will want to install some
software and we can get most of it done right from
the terminal. We're going to install gparted, for
partition and drive management, gimp, for image
management, default-jre, so we can use the Java
runtime environment, and chromium-browser, to add
a Chrome browser to the system. Copy and paste the
following command in the terminal window and hit
enter.

$ sudo apt-get install gparted -y; sudo apt-get

install gimp -y;

sudo apt-get install default-jre -y;

sudo apt-get install chromium-browser -y;

The next piece of software we need to install is a great
Java IDE, https://www.netbeans.org. Fire up your
browser and navigate to the netbeans website
(https://www.netbeans.org).

Figure 25

Click the download button and you will be brought to
a screen with a list of versions. Go to the latest stable
version and click the download button as shown
below.

Figure 26

This will take you to a page with a few di�erent links
for the version of netbeans you selected. We will want
to download a zipped version of the binary �les. Click
the binaries link and let the IDE download.

Figure 27

Go to the Downloads folder and copy and paste the
zip �le into a new folder named install_zips, create
this folder in your home directory. Once the �le is
done copying over, unzip it by right-clicking the
compressed �le and selecting the unzip menu option.
Create another new folder in your home directory
named applications. Move the uncompressed version
of netbeans into this directory. Open the folder, �nd
the bin folder, open it, and right-click on the �le
named netbeans. Choose the “pin to desktop” option.
Now we have a link to open our netbeans IDE. But
wait, it looks, well rough. Let us grab a good looking
icon for it. Navigate your browser to
https://commons.wikimedia.org/wiki/File:Apache_N
etBeans_Logo.svg. Save the netbeans icon �le from
the page that loads up.

Figure 28

Figure 28]

Right-click on the desktop shortcut for netbeans. Click
on the icon and �nd the new netbeans icon you just
downloaded. Choose it to be the icon for the desktop
shortcut. Now we have a proper looking IDE shortcut.
Open up the netbeans IDE and allow the IDE to install
any modules it needs. You may also have to do this
when opening a new project for the �rst time, simply
allow the IDE to install the modules it needs.

https://www.netbeans.org/
https://www.netbeans.org/
https://commons.wikimedia.org/wiki/File:Apache_NetBeans_Logo.svg

Figure 29

Setting up a Swap Partition

In this step we will turn on a swap partition and set up
our ODROID-N2 to always enable swap space on
boot. This can help us with the IDE and other memory
needs we will have when writing games for the
ODROID-N2 on the ODROID-N2. First we will check if
we have any swap space enabled. Run the following
command in the MATE Terminal, Menu -> System
Tools -> MATE Terminal. You may want to right-click
the menu option and click pin to desktop so that you
have a quick shortcut to the terminal when you need
it.

$ sudo swapon --show

If there is no text displayed you do not have swap
space enabled. If you do see some information
printed then you have swap space enabled and you
can skip the rest of this step. Create a new swap �le
on the root of the boot drive by running the next
command.

$ sudo fallocate -l 1G /swapfile

Set the permissions on the swap �le to be secure.

$ sudo chmod 600 /swapfile

Enable the �le as a new swap �le.

$ sudo mkswap /swapfile

Turn on the swap �le.

$ sudo swapon /swapfile

To enable the swap �le on every boot edit the fstab
�le and add the following entry, like so.

$ sudo nano /etc/fstab

Copy and paste the following line at the bottom of the
�le's current contents.

/swapfile swap swap defaults 0 0

Give the system a reboot by running the following
command, sudo shutdown -r now, and bam! We now
have an active swap partition. When the system
comes back up you can check that the swap �le was
enabled by running, sudo swapon --show. You should
see an entry print out after running the command. If
not, go through the process again and make sure you
run the correct commands in order.

Mapping Speci�c GPIO Pins

In this step we will use the terminal and our
breadboard to �gure exactly what number the GPIO
pins, as they are expressed on the breadboard, are.
Now sometimes you can check the documentation to
see where each pin is, but depending on the OS and
how it works you might �nd yourself in a situation
where the pin numbers aren't matching the
documentation. Plus it's fun to hook up an LED to the
ODROID-N2 and get the light to blink.

Now you will have to connect your breakout
breadboard to the ODROID-N2. Simply plug the
connector onto the GPIO expansion pins on the
board. Make sure it is facing the correct way, the red
stripe on the ribbon cable should line up with the side
of the GPIO pins that have labels 1, and 2.

Figure 30

We are going to setup a simple circuit using 1 resistor,
1 LED, and 3 jumpers using the breakout breadboard
tinker kit from Hardkernel. We're going to setup the
following simple circuit. Follow the image and
diagram below. Your pin may be di�erent. I'm using
pin number 488 which maps to position 7 on the
breadboard.

Figure 31

Figure 32

A simple circuit diagram is as follows. The circuit
serves two purposes. One, it allows for the pin voltage
to drive the LED. This is handled by the �rst branch of
the circuit. Two, it allows for the pin voltage to be
driven by a button. This is used to mimic input from a
gamepad.

Figure 33

Follow the images and diagram and set up a similar
circuit on your breadboard. Once it is ready we're
going to run a script to locate some workable pins.
Download the following GPIO scripts (zip) �le,
https://bit.ly/32vO2Ek. It has multiple scripts for
working with the GPIO pins. Once the �le download is
completed, decompress the zip �le and move the
btn_test, btn_prep, and pin_�nder scripts into the
home directory. Clean up the download folder by
moving all the zip �les into the install_zips folder we
created earlier. This will give you a backup of all the
�les you need for this tutorial. Next we are going to
query the GPIO pin �les to get an idea of what
numbers our Linux OS has assigned to the pins. This
will give us a range to work with. We're going to be
running some tests to �gure out which pin is
associated with what GPIO number. Run the following
command to see the GPIO pin numbers.

$ sudo ls /sys/class/gpio/

You should see certain numbers next to the GPIO
chips found. These indicate starting pin numbers and
can be an indication of a pin range.

/sys/class/gpio/gpiochip64/

/sys/class/gpio/gpiochip128/

You will see di�erent numbers but what they indicate
is a range of pin numbers from 64 to 128 and possibly
from 128 up to some unknown number. This will give

you an indication of what GPIO numbers to use when
you start looking for matching pins. Now, open a
terminal and run the following command from the
home directory, nano pin_�nder. All the �les are
setup to work with pin number 488 by default. This
may work for you but you should still complete these
steps so you know how to �nd more of your own pins.
Edit the text at the top of the �le, TMP=488, and
change the number to one of the numbers in the
range you identi�ed previously. Or you could just
move up one to 489 and try that. Write and save the
�le, Ctrl + O + ENTER, followed by Ctrl + X. Run the
script with the following command.

$ sudo ./pin_finder

The script will toggle the high and low value of the
target pin. Move connector #1 from pin to pin, waiting
for 2 seconds at each spot to see if the LED �ashes. If
it does you have found the pin location that matches
the Linux GPIO pin number.

Figure 34

When you �nd one blinking pin, write down the
position on the breadboard and the pin number used
to �nd it. Make sure to exit the pin_�nder script with
Ctrl + C when the LED is o�. If you miss the timing just
start the script and try again. Open the btn_test with
the command, nano ./btn_test. Edit the line at the top
of the �le and enter in the number of the pin you
have found. Write the �le and exit with Ctrl + O
followed by Ctrl + X. Run the btn_test script like so,
sudo ./btn_test. While the script is running, toggle the
push button and you should see the output change
from 0 to 1 and the LED turn on and o�. The image
below shows the terminal output during this process.

https://bit.ly/32vO2Ek

Figure 35

Setting up a Service for GPIO Permissions

In this step we will quickly setup a service in Linux that
will open up the GPIO pin you have located to the
odroid user so that we do not have to type sudo every
time we want to use it, and so that our Java program
can access them also without being required to run
the sudo command. Edit the btn_prep script using
nano as we have done before. Change the number at
the top of the script to the GPIO number you located
with the pin_�nder script. Open a terminal and run
the following commands to set the permissions for
the GPIO button prep �les. You should have a �le
named btn_prep and custgpiosvc.service in your
home directory.

$ sudo chmod 755 ./btn_prep

$ sudo +x 755 ./btn_prep

$ sudo chmod 755 ./custgpiosvc.service

Next we will copy the btn_prep script to the /usr/bin/
directory. Run the following command in the terminal.
Make sure you are in the home directory. If you need
to get back to the home directory run these
commands,

$ sudo cp ./btn_prep /usr/bin/

Now we will install the systemd service so that our
system will set permissions to the GPIO �les so that
the odroid user can access them without running the
sudo command. This will make things easy for us to
access the pins from Java.

$ sudo cp custgpiosvc.service /etc/systemd/system

&& sudo systemctl start custgpiosvc

Check to see if the service is up and running with the
following command:

$ systemctl is-active custgpiosvc

You should see the word “active” as output. To run the
service each time the system boots up you will have
to run, systemctl enable custgpiosvc. Now give the
system a reboot, sudo shutdown -r now.

Setting Up Projects in Netbeans

In this step we will load up the Java project we need
into the Netbeans IDE and make some slight
con�guration changes. First download the version of
the project we will need for this tutorial. This project
will be updated and di�erent as the tutorial series
proceeds so expect to download a similar project �le
in the future if you follow along.

Netbeans IDE Project v0.5.0 (https://bit.ly/2w7i70z)

The project includes a lot of Java �les and we will go
over them in a future tutorial but we're going to focus
on a small project for interacting with the ODROID-
N2's GPIO pins. I will do a more in depth review of
code in an upcoming tutorial. And we will go over the
game API, also in an upcoming tutorial, because we're
going to be working with it to build some games!

Unzip the project after it �nishes downloading. Copy
the original zip �le to the install_zips folder. Move the
resulting project directory to a new folder in your
home directory. Name the folder netbeans_projects.
Now �re up netbeans and open the project by clicking
the File -> Open Project menu option. Navigate to the
netbeans_projects folder you created and choose the
MmgGameApiJava_v0-5-0 folder. The project will load
up in netbeans, allow netbeans to install any
necessary modules if it pops up and asks to do so. We
are going to make sure the project has one slight
con�guration change. Right-click on the project and
select the properties option similar to what is shown
below.

https://bit.ly/2w7i70z

Figure 36

Make sure that the Build -> Packaging -> JAR File
property is set to the following,
dist/MmgGameApiJava.jar as shown below.

Figure 37

We are all ready to run our Java programs and
demonstrate Java connection to Linux GPIO pins! This

was a long detailed tutorial to setup our environment.
I hope you learned a lot going through it, you have
certainly accomplished a ton. We're going to be using
this setup to create some Java games for the ODROID-
N2 on the ODROID-N2 and use the GPIO pins to
control the game with a simple game pad of sorts.
This tutorial was the �rst step.

Reading GPIO Pins with Java

In this step we will tie everything together and read
the status of a GPIO pin using Java, very cool. Go to
the project you just loaded in netbeans,
MmgGameApiJava. Expand the Source Packages
section, select the com.middlemind.OdroidGpio
package and expand it. Select the OdroidGpio.java �le
and open it.

Figure 38

Change the GPIO pin number next to the new GpioPin
lines. There are six of them to handle a 4 direction D-
Pad and 2 input buttons. For now though, set the �rst
number, 488, to the GPIO pin number you located
yourself with pin_�nder. Once that is done right-click
on the MmgGameApiJava project and select clean and
build. Open a terminal and navigate to the JAR output
directory using the following command. $ cd
~/netbeans_projects/MmgGameApiJava_0-5-0/dist
Make sure there is a new MmgGameApiJava.jar �le in
the directory by running the command, ls -al
./MmgGameApiJava.jar, in the terminal. Get ready to
run the program, while it's running we are going to
toggle the LED and see what the Java program does.
Make sure your circuit is setup to work with the pin
number you chose, check your notes from the
pin_�nder step. When you are ready, right-click on the
OdroidGpio.java �le and select Run �le, from the
menu. While the program is running press the button

and hold it for a second or two, you should see
ProcessAPress in the output window when the button
is pressed as shown below.

Figure 39

That wraps up our �rst tutorial in this series: reading
the status of GPIO pins in Java running on your own
personal ODROID-N2 Linux computer. That’s a good
start and a great place to end this �rst tutorial. Stay
tuned! Software and Scripts The software and scripts
used in this tutorial can be downloaded at the
following links. There are also links provided in the
tutorial at the step where they are needed. GPIO
Scripts (https://bit.ly/2HUJXA1) Netbeans IDE Project
v0.5.0 (https://bit.ly/2TguWxy)

For comments, questions, and suggestions, please
visit the original article at
http://middlemind.net/tutorials/odroid_go/odroid_j
gd_0.html.

https://bit.ly/2HUJXA1
https://bit.ly/2TguWxy
http://middlemind.net/tutorials/odroid_go/odroid_jgd_0.html

Linux Gaming: ODROID-GO Advance
 March 1, 2020  By Tobias Schaaf  Gaming, ODROID-GO Advance

The recently released ODROID-GO Advance has a lot
to o�er for ODROID fans, and retro gaming
enthusiasts. The design of the ODROID makes it
perfect for retro gaming and the build in gaming
controls are perfect for this purpose.

Still, the board itself can do so much more and we’re
lucky to have drivers for nearly any purpose, so I want
to look into some alternatives besides emulating retro
consoles and test what is possible on a Desktop for
the ODROID-GO Advance. I want to test how other
applications can be controlled without having to
attach a mouse or keyboard all the time, and �nd out
whether using the gamepad controls for input is
intuitive for these games.

Requirements

For my test run, I used my Debian Buster image that I
released some time ago. I also installed a MATE
Desktop on top of it to have a desktop environment. I
will make heavy use of a tool called antimicro which

will be the basis for all my controller mapping. The
programs and games I use either come from my
repository or directly from Debian.

Desktop scaling

Some of the applications I want to run require a
minimum resolution of 640x480. Since the ODROID-
GO Advance has only a resolution of 480x320, we
have a problem with these. Luckily for us, X11
supports scaling and allows us to “virtually” increase
the size of the Desktop by scaling the output image
accordingly. Using the following command, we can get
a virtual desktop with the dimensions of 720x480:

$ xrandr --output DSI-1 --scale 1.5x1.5

This command gives our desktop a size of 960x480
(four times the size of the original desktop):

$ xrandr --output DSI-1 --scale 2x2

Because the picture is scaled everything gets a lot
smaller, which in return makes things like text much

harder to read, so if you are having issues with very
small sized text, this may turn out to be a problem for
you.

Antimicro

Antimicro is a tool that allows you to map controller
buttons to any type of action you want. It can be that
with the press of a button, you press a single key on
your keyboard instead. For example, when you press
D-pad UP, you press the UP key on your keyboard. It
can also be a combination of keys. For example, if you
press the button I on the ODROID-GO Advance, you
do an ALT + F4 on the keyboard instead.

It can even be an entire series of keystrokes in a row,
instead of at the same time. For example, like for
Quake 2, you could de�ne a button that �rst triggers a
“~” to open the cheat menu, then types “give all”
followed by the ENTER key and at last does a “~”
again, all with the press of one single button. You can
even map mouse events, like moving the mouse
pointer or left and right mouse button to buttons on
your gamepad.

I guess you understand how powerful this application
can be to help con�gure your games and programs to
run only with the ODROID-GO Advance gamepad
controls rather than an attached mouse and
keyboard. For this, you need to install antimicro-
odroid. Note that there is also an antimicro directly
from Debian, but it requires QT5 which is currently
not con�gured correctly on arm64, therefore please
use the antimicro-odroid package instead.

Figure 1 - Antimicro running on the ODROID-GO Advance
mapping mouse movement, buttons and arrow keys

The UI from antimicro is actually quite big and
requires you to scale the desktop 2x2 in order to �t.

Firefox

Let’s start o� with some applications instead of
games. Firefox as a web-browser runs ok on the
ODROID-GO Advance. I used just a basic setting in
antimicro that maps the analog-stick as a mouse
pointer, L und R as mouse buttons and the D-pad as
the arrow keys. I could map more buttons like F11 for
full screen ESC to escape out of a fullscreen video or
something similar, but I opted not to. Using 2x2
scaling is actually a nice size and you have a good
amount of detail on the screen, but testing the
ODROID forum as a option for reading some text the
experience was not very good. With 2x2, the text is
way too tiny to really read anything. So I opted for
1.5x1.5 scaling instead, and although I lost some
space, it was good enough to go through the threads
on the forum and read them. Using the D-pad for
scrolling up and down also made it quite easy to
navigate and for the rest I could use the mouse
pointer. The downside, of course, is that you don’t
have any input. I could have used an on-screen
keyboard, but that would cover most of the screen, so
I abandoned that idea, and instead tried something
that could be easier to use through navigation and
ended up setting on YouTube. It’s quite usable, since
you navigate nearly entirely via mouse, and when you
double click a video, it nicely �lls the screen and turns
your ODROID in a nice little video player. I was
actually quite surprised that videos up to 720p are
working, but since it’s stressing the CPU a lot, I
suggest using 480p, which is also closer to the actual
screen size at 1.5x1.5 scaling. In fact, the speaker was
performing quite well too, and the sound of music
videos and even a 4-hour Looney Tunes special was
good.

Figure 2 - Youtube on the ODROID-GO Advance

Figure 3 - The ODROID-GO Advance is a nice video player
on the go

There was one downside though while testing this, in
that when a video was playing the navigation through
antimicro, it seemed to be delayed and the mouse
pointer was sluggish. I compared this with using a real
mouse, but the issues did not happen with a real
mouse, so it seems that the high CPU usage of the
video a�ects antimicro and can cause slow downs in
the mouse pointer emulation. It did work, but it was
just somewhat delayed.

Clementine

Clementine is my favorite music player for Linux (and
even on Windows in the past). Running it on the
ODROID-GO Advance was very easy, and using
antimicro to navigate it with a mouse was very simple.
You can easily add your favorite music stations and
playlists, and then use the ODROID simply to navigate
between your music, audiobooks, or whatever you
put on there. The CPU usage is very minimal, using
only about 10 to 15% CPU capacity on one core while
playing an Internet live stream. With this, you can turn
your ODROID into a mobile music player. Add a

bluetooth module, turn o� the screen, and you can
listen to music for hours and hours. Using antimicro is
to navigate here is very easy and intuitive. You can
easily map a bunch of buttons to navigate just a single
button click:

F5 – Previous Track

F6 – Pause

F7 – Stop

F8 – Next Track

CTRL + M – Mute

CTRL + Q – Quit

Mapping these on I to VI for example gives you easy
access to your control through your playlists.

Figure 4 - Clementine with 1.5x1.5 scaling, works as well
in 1x1 and 2x2; just pick which one you like the most

Games

Ok let’s stop with the boring applications. I guess you
get the idea: everything that works �ne just with input
of mouse or arrow keys still works perfectly �ne on
the ODROID-GO using Antimicro. You can setup key
combinations or map buttons for extra stu� like on
the music player clementine, but what I really want to
know, how is gaming working here?

Alien vs Predator

This fast-paced action shooter is no problem for the
ODROID-GO Advance. It was a little bit hard to
con�gure at �rst, but due to some changes in the
code that I made, it works perfectly on the ODROID-
GO Advance. You need to run this game without
scaling (1x1), or else you will only be able to run it in
window mode, while in 1x1 you can run it in full
screen mode, which looks amazing. The game itself

though is hard to control, especially since I come from
a PC gaming background with little experience.
Playing a �rst-person shooter with controllers was
hard for me to �nd a comfortable way to play. You
need one button for the key combination ALT + Enter
as the game starts in window mode, and it needs to
be switched to full screen mode in order to capture
the mouse pointer correctly. My button layout was as
following:

D-pad – Arrow Keys

Analog Stick + L and R – Mouse

B – Space (pulling switches)

A – RSHIFT (jumping)

Y – RCTRL (for crouching)

X - “]” for cycling through weapons

I – ESC (menu)

II – free

III - “.” (throwing �ares, cloaking)

IV - “/” (switching view modes – Predator)

V – free

VI – ALT + Enter (switching full screen mode and back)

The two free buttons could easily be con�gured with
one of the many other functions keys in the game:
zoom for example, or throwing disc recall. Depending
on your needs, these keys will be used up very
quickly.

Figure 5 - AVP looks gorgeous on the ODROID-GO
Advance

Figure 6 - Cloaked as a Predator on the hunt for Humans

The overall gaming experience is rather mediocre in
my opinion. The layout works, but since you need to
switch between analog stick and to walk and adjust
your sight, it’s not very easy to do this quickly. While
playing as a Predator, whose specialty is stealth and
sneaking, this is �ne, but fast action scenes with the
Marine or Alien are nearly impossible to pull o� (or
maybe I’m just really bad at this kind of control
scheme). I wonder if replacing D-pad left and right
with mouse left and right for turning would already
improve gameplay a lot. The stra�ng is not very
helpful either. The gameplay is very fast and �uent,
and I haven’t experienced any lagging at all, so
technically nothing stands in your way to play it once
you learn how to control it. Overall, it was a nice
experience.

Corsix-TH (Theme Hospital Clone)

The funny simulation / management game Corsix-TH
runs quite well on the ODROID. It uses SDL2, and with
that, adjusts automatically to the display size you
have. So it will work no matter if you use 1x1, 1.5x1.5
or 2x2. In fact, it probably always looks the same. The
menu and text is quite hard to read since the font is
quite tiny. The game is rendered in 640x480 and then
scaled to the resolution you have. Overall, it’s an
interesting experience, and quite playable with just
the ODROID-GO Advance’s gamepad as an input.
Using the analog-stick and L+R for mouse works �ne,
and using D-pad for arrow keys allows for faster
scrolling. Other keys are not necessarily needed, but if
you want to save a game you must be able to enter a
name, so I suggest mapping any keyboard key like “1”
or so to “type” something as a �le name for your save

game. You can also map ALT + Shift + S (for quick
save) and ALT + Shift + L (for quick load) which
probably is already enough as you probably not
gonna play on multiple levels at a time.

Figure 7 - As with most of the 640x480 games, the text is
hard to read

Figure 8 - The game itself runs �ne and looks good

As there is no extremely fast action required, it’s
working �ne with the ODROID-GO Advance gamepad
controls. The game is quite playable with the
exception of the hard to read text, but it’s not
impossible, and if you know the game you probably
don’t read anything anyway.

Dune Legacy

The Dune 2 clone Dune Legacy is another game made
for a minimum 640x480 resolution. Like Corsix-TH, it’s
written in SDL2 so it does work on any resolution, but
it will scale the display accordingly. Once again, this
means that text is going to be hard to read, but it still
works �ne. When you �rst start the game, it’s going to
be started in 480x320 which looks �ne, until you
notice some of the buttons are missing. Therefore, I
highly suggest changing the resolution to 640x480,

which is the minimum anyway. After that, the menu is
signi�cantly harder to read but at least you have all
the buttons that are there.

Figure 9 - As expected, text is very hard to read

Figure 10 - It’s not that hard to organize larger armies
for attacks

Overall, the controls via gamepad work �ne. I used
the standard layout with mouse and arrow keys
mapped, and it �ts most situations. The arrow keys on
the D-pad actually are very convenient for scrolling,
and much easier than using the mouse at the edges
of the screen. There’s no quicksave and quickload
feature, so this time you need to map at least one
button for input “text” for save games. Another good
idea is to map CTRL + 1, CTRL + 2, etc. to assign
groups that you can jump in between �ghts. Since you
have to call them with 1 and 2 to switch back to the
groups that you assigned this, can also double as your
text input for save games. Overall, I was surprised
how well this performed in terms of the controls. I
was able to play the �rst 5 levels of Harkonnen
campaign without any trouble, but I wonder how it
will work out in later levels where you have to
organize di�erent armies to take out the enemy.

Dune 2 was one of my favorite games to play on the
Amiga, so I’m quite happy this remake works quite
nice on the ODROID-Go Advance

Gigalomania

Gigalomania is another strategy game. This game is a
clone of Mega-lo-Mania, which is another Amiga
Classic that I really liked. This game doesn’t give you a
lot of options in matter of graphics, since it’s rendered
in 640x480 and scaled to whatever your desktop
resolution is. As you probably guessed, text is hard to
read.

Figure 11 - The text is barely readable, especially
numbers

Figure 12 - The numbers are so tiny that it actually
becomes an issue

The game is controlled by mouse alone, and there’s
nothing else you need, so there’s also very little to
map inside Antimicro to make this game work.
However, the tiny font really becomes an issue in this
game. While I usually ran through the �rst era (10000
BC), I failed on the �rst try for 2000 BC (the second
era), and the reason was that I couldn’t see the state
of my army. I wasn’t able to tell if I or my enemy had
more units, and who was winning and losing. It turned

out that I was losing, but didn’t know it. This is
somewhat annoying, and shows the limitation of
scaling.

Hedgewars

This one is tricky. It uses Qt5 which, on Debian, is for
arm64 compiled against OpenGL although arm64
boards normally just have OpenGL ES. Even if you
replace Qt5 with a version for OpenGL ES, the game
itself still requires OpenGL to work correctly.
Therefore we need libgl-odroid installed for this game
to work at all. Hedgewars has a minimal resolution of
640x480, but since it does not use SDL2 but Qt5
instead, it does not scale to 480x320, which means it
would not run as is. In order to get the game to run at
all we need to scale the desktop 2x2 or else the game
won’t start. The menu itself can be started in full
screen mode and looks quite nice. Most of the text is
big enough to read, but some text is still tiny. The
game itself can only be started in window mode, and
full screen mode won’t work. The game has quite a
few hotkeys you might want to map, aside from
mouse and arrow keys.

1-5 can be mapped for the time grenades take to
explode

Precise aim (normally left shift) can be used for better
aiming, or in combination with 1-5 for bounciness

Tab might be needed to switch through your Hogs
when using switch hogs

H to center view back to the active hog

Enter is used to jump forward

Backspace for jumping high and backwards

Space is required to �re your weapon

Enter, Backspace, and Space probably should be
mapped to Y,B,A as you use them most often. The
rest of the buttons are pretty much for everything you
want. You also might want to map ESC and “Y” to exit
the current game, or ALT + F4 to quit the game.

Figure 13 - The game looks good even with a 960x640
desktop resolution

Figure 14 - The text is most of the time big enough to
read

The game runs surprisingly well and is for the most
part quite nice to play. The controls, once they are
setup to your liking, work surprisingly well, although
you are a little slower than with a real mouse, and a
little less precise. Overall this is quite fun. You have to
start the game from console with:

$ LD_LIBRARY_PATH=/usr/local/lib hedgewars

LZDoom

LZDoom is an engine to run di�erent Doom engine
games, such as Doom1, Doom2, Hexen, Heretic, and
many fan made games like Castlevania: Simon’s
Destiny, which brings a Castlevania style game in the
�rst person 3D perspective. LZDoom has many
di�erent resolutions that it supports, starting with
320x200. I recently added support for 480x320 to
support the ODROID-GO Advance display resolution.
The engine is quite advanced, and o�ers features
such as Fog and ambient lighting, but uses OpenGL in
the background. Therefore, it runs on gl4es from

@ptitSeb in order to use OpenGL 2.0 features.
Although the engine itself o�ers joystick support, I
suggest against using it, and rather map keyboard
and mouse controls via antimicro as usual. The
reason for this is that you can not navigate through
the menus with the joystick support, but since the
keyboard works for both menu and in game, I
recommend using keyboard and mouse instead as an
input method. Enter and Space are a must bind for
this as they are used in the menu and in game. ESC
should be mapped as well to go into the menu. You
need to enter a name for save states, but having
space mapped already should be enough, and you
probably end up mapping more keys anyway. I
suggest mapping the switching on weapons, jumping,
primary and secondary attack. Everything else
probably depends on the game that you use. The
original Doom game can be played completely with
just an attack button, an action button (space) for
activating stu� and your basic walking controls, so it
depends on you how much you want to con�gure.

Figure 15 - Classic Doom 1 running in LZDoom on the
ODROID-GO Advance

Figure 16 - Castlevania: Simon’s Destiny looks just
gorgeous

Overall, LZDoom runs very well on the ODROID-GO
Advance, and might just beat prboom libretro port in
matter of how well it plays and how versatile it is.

OpenXcom

I simply love this game. I started playing it on the
Amiga, and later played it under DOS. There are a lot
of games in the same spirit, like the new Xcom series
available on Steam and other platforms, or the UFO
series (UFO Aftermath, Aftershock, Afterlight) and I
love them!

Figure 17 - The game looks amazing and the big buttons
make text easy to read

Figure 18 - Even in missions, you never lose overview

This game uses standard SDL 1.2 instead of SDL 2.0,
which means that it does not automatically scale the
picture and you have to scale your desktop to 2x2 for
the game to work correctly. You can select the
960x480 as a resolution for the game and the game
will work �ne. Luckily, the game uses rather large
fonts which makes the text much easier to read. The
game is also round based, so there is no hurry when
making a move, and you have all the time in the world
to �ddle around with the controls. The mouse and

arrow keys are again your best method of control.
You can use the arrow keys for fast but precise
scrolling, and the rest is done with the mouse. Binding
ESC for faster access on the menus is quite handy,
and you also need it if you want to save and load
games for example. For save games, you probably
need to map an “input” for save game names.. But
you could also map F5 (quick save) and F9 (quick load)
instead, although I normally use more than one save
game. I just love this game. It has many mods to
improve the original experience with remixed, music
and weapons and even total conversion. It supports
the classic Xcom 1 and 2 games (Enemy Unknown,
and Terror from the Deep). It is really fun to play on
the ODROID-GO Advance.

Quake 2 (yquake2 engine)

Similar to other FPS shooters mentioned here, this is
hard to con�gure, since the games were meant for
mouse and keyboard. This game makes heavy use of
the mouse for aiming, which is somewhat of a
problem, as the D-pad and analog-stick are on the
same side, which means you would have to switch
between aiming and walking. The problem with this
game is that you can not disable game input, and
even if you remap the buttons, they often turn out to
do something di�erent. I ended up mapping
movements on the ABXY buttons (front, back, side
steps). I increased the mouse speed since it’s used for
looking around and was way too slow for me. I used
mouse button 1 for �ring, and I mapped the D-pad for
crouching, jumping, and activating things. I also
mapped buttons for next and previous weapons and
items, as well as the Info computer for mission info.
The only drawback was that navigating through
menus did not work as I hoped it would.

Figure 19 - Quake 2 looks gorgeous on the ODROID-GO
Advance and supports high res textures

The game ran surprisingly well, and I quickly found a
way to walk aim and shoot like I wanted to. Crouching
and jumping took a while to get used to, but overall
the game ran �ne. Unfortunately, the fact that the
game always interprets buttons as an action on the
gamepad, so you can’t navigate through menus, as
each press of a button is the same as pressing enter,
therefore I have to say it’s not 100% mobile as you still
need a keyboard to navigate menus. The game can be
con�gured to run in 480x320, through the games
con�g.ini �le.

RVGL

This racing game is one of the few games that I tried
which has a controller mapping that also works for
the menu, which means that once you have
con�gured your ODROID-GO Advance gamepad for
the game, everything works as it should be just by
using the controller to navigate the menus, play the
game, and everything else. There is no need for
antimicro, and since the game uses SDL2, it
automatically scales to the size of the screen, so no
changes on the scaling either.

Figure 20 - RVGL has very good graphics and responsive
game controls, and this game was made to be played
with a controller

While the controls are �ne, the game seems to su�er
from some issues. Whenever there are a lot of e�ects
going on on the screen, like an explosion, the game
slows down signi�cantly. It’s the same when a race
starts. The moment the Go sign comes up, the game
is at 1 FPS for a few seconds after which the game
runs �ne again. I haven’t yet �gured out what causes
the slowdown, but generally it should work much
better. This game is perfect for the ODROID-GO
Advance, and its gamepad design doesn’t have so
many buttons that you couldn’t comfortably map all
functions to the gamepad, and the controls act fast
and precise. I hope I can �nd a way to �x the
slowdown.

Devilutionx (Diablo 1 engine)

Last, but de�nitely not least, I want to talk about
Devilutionx, which is an engine made for Diablo 1. I
recently posted a short video of this game at
https://oph.mdrjr.net/meveric/other/Videos/GO2/go2-
1.mp4. The game looks beautiful on the ODROID-GO
Advance, and can be controlled fully by mouse input
alone, but you will probably want to map the quick
item bar to chug down health potions. The game
actually supports controller mapping as well, but this
has to be done in the code itself for the moment or in
SDL2 directly by choosing the controller with an
environment variable. I haven’t done either of these
things yet, but it might be worth it, because during
fast action scenes, controlling the game via emulated
mouse can be quite hard (or maybe my re�exes are
just too slow). Overall, the game looks and sounds
gorgeous on the ODROID-GO Advance. It has

beautiful music, sounds, and voices everywhere.
Although it is made for 640x480, the font is big
enough that you can read everything that is going on
on the screen. Maybe I’ll take the time and create an
SDL2 mapping for the ODROID-GO Advance, so we
can use it for this (and other) games that use SDL2 as
a basis.

Figure 21 - This title screen brings back so many
memories

Figure 22 - Even after over 20 years, the game still is
phenomenal

Conclusion

It has become more and more clear to me that one of
the main limitations is the low resolution of 320p.
Many games were created with a resolution of
640x480 in mind, and you can feel this everywhere.
Although for most of the games, scaling is a
possibility, it often makes text very hard or even
impossible to read. Controlling games via game-
controller and mapping of mouse and keyboard to
buttons has its limitations, especially when fast
controls are required or you need to work very
precisely, and a combination on the gamepad is not
really suited for this. On the other hand, it also shows
that with a little training, and the correct button
mapping, games can play quite nicely. I personally
was surprised how well Quake 2 performed after
some controller tweaking. I know that for sure a
controller is always slower than a real mouse, but it
still felt natural, and after some time I got quite well
playing with a controller instead of mouse and
keyboard. The ODROID-GO Advance is mainly
targeted for retro-console gaming, but luckily it’s not
limited to this. There are many possibilities of what
you can do with it aside from “just console”, and I’m
pretty sure a lot more games and programs will be
available to use on the device over time.

ODROID-GO Advance Operating Systems: An Overview Of The
Currently Available Prebuilt Images
 March 1, 2020  By Rob Roy, Editor-In-Chief  ODROID-GO Advance

Now that the ODROID-GO Advance has been out for
several months, there are some amazing operating
systems that have been ported by the ODROID
community. This article highlights several of those
operating systems, and includes links to pre-built
images that allow you to run them on your own
ODROID-GO Advance. For instructions on how to
create an ODROID-GO Advance SD card from the
images detailed in this article, please check out the
ODROID-GO Advance Wiki at
https://wiki.odroid.com/odroid_go_advance/make_s
d_card. Before playing games, you also need to
transfer your game ROMs as described at
https://wiki.odroid.com/odroid_go_advance/transfer
ring_game_roms.

Ubuntu Minimal image with EmulationStation

Hardkernel’s o�cial Ubuntu image o�ers extremely
fast bootup time, minimal setup, and an excellent

emulator that is already set up to emulate the
following systems:

Atari 2600

Atari 5200

Atari 7800

Atari Lynx

Sega Game Gear

GameBoy

GameBoy Advance

GameBoy Color

Sega Master System

Sega Mega Drive

NES

PC Engine

PC Engine CD

PSX

Sega CD

SNES

https://wiki.odroid.com/odroid_go_advance/make_sd_card
https://wiki.odroid.com/odroid_go_advance/transferring_game_roms

PSP

Just update the SD card with the image, copy the
games to the ROMS folder, and boot it up!

Figure 1 - EmulationStation is an easy way to launch all
of the supported ODROID-GO Advance emulators

EmuELEC for the ODROID-GO Advance

Forum contributor @shanti maintains a build of
EmuELEC for the ODROID-GO Advance, which is an
Alpha release. You can �nd out more information
about the latest build by visiting
https://forum.odroid.com/viewtopic.php?
f=193&t=37516, and watch videos of it in action at
https://youtu.be/r7rDkB9VkFE and
https://youtu.be/uC69OLUyA3U. To install EmuELEC,
follow the standard instructions mentioned above for
copying the image to the SD card. It o�ers emulators
for the following systems:

NES

SNES

SNES with MSU1

Genesis (MD)

PSX

Naomi

N64

Sega Master System

Amiga (with PUAE, working on Amiberry)

It uses Retroarch as its core, so most emulators
o�ered by Retroarch and supported by libretro are
available with this image. To download EmuELEC for
the ODROID-GO Advance, visit
https://test.coreelec.org/mirrors/emuelec/. Make
sure to use a fast SD card so that games run at full
speed.

Figure 2 - EmuELEC for the ODROID-GO Advance o�ers a
wide variety of emulators

Batocera Linux

Forum contributor @nadenislamarre o�ers a port of
Batocera Linux for the ODROID-GO Advance, which is
a specialty gaming image that facilitates running retro
games on nano computers. It is an open-source
project that already runs on the ODROID-C2, ODROID-
XU4, and ODROID-N2. It’s available for download from
https://batocera.org/download, and you can see a
video of it at https://www.youtube.com/watch?
v=qZQyn40zVHk, https://www.youtube.com/watch?
v=FAOCqOzdH58, and
https://www.youtube.com/watch?v=dy6U3nmU924.

The ODROID-GO Advance image supports a wide
variety of emulators, including Amiga, Apple II, Atari,
Commodore 64, Gameboy, Nintendo, Sega, and many
others, as well as a build of Kodi for media playback.
The latest image is available at
https://batocera.org/upgrades/odroidgoa/beta/last/
, where you can follow the progress of the team as
they port the individual emulators.

Figure 3 - Batocera Linux for the ODROID-GO Advance is
also available on many of the other ODROID devices
such as the C2, XU, and N2

Retro Arena OS

https://forum.odroid.com/viewtopic.php?f=193&t=37516
https://youtu.be/r7rDkB9VkFE
https://youtu.be/uC69OLUyA3U
https://test.coreelec.org/mirrors/emuelec
https://batocera.org/download
https://www.youtube.com/watch?v=qZQyn40zVHk
https://www.youtube.com/watch?v=FAOCqOzdH58
https://www.youtube.com/watch?v=dy6U3nmU924
https://batocera.org/upgrades/odroidgoa/beta/last

The Retro Arena operating system was recently
ported and released by @Slaminger, and is a work in
progress that welcomes contributors. It supports 48
di�erent systems, some of which require a bios to be
manually installed. You can download the latest
image at
https://drive.google.com/�le/d/1TFph93l7XAiDkd94
d-Kp0_a9qEHnaMsF/view?usp=drivesdk, and post
suggestions, questions, comments, and contributions
on the ODROID Forum thread at
https://forum.odroid.com/viewtopic.php?
f=193&t=37281.

Figure 4 - Retro Arena is a newly released operating
system for the ODROID-GO Advance that supports 48
di�erent systems

Figure 5 - Retro Arena is a newly released operating
system for the ODROID-GO Advance that supports 48
di�erent systems

Figure 5 - Retro Arena is a newly released operating
system for the ODROID-GO Advance that supports 48
di�erent systems

Debian Buster

Veteran ODROID forum contributor and ODROID
expert @meveric expert, who also writes the monthly
Linux Gaming column in ODROID Magazine, o�ers the
community’s largest repository of ODROID games,
operating systems, applications, tools, and utilities at
https://oph.mdrjr.net/meveric. His favorite operating
system is Debian, and not only maintains the
immensely popular ODROID GameStation Turbo for
the ODROID family, but has also ported the latest
version of Debian, codenamed Buster, to the
ODROID-GO Advance. Debian Buster is not
necessarily a gaming image for the ODROID-GO
Advance, but is actually a fully functioning version of
Debian Linux that allows the device to be used for any
task that a desktop Linux computer can do. It is highly
recommended to attach a keyboard to the ODROID-
GO Advance for use with this image, along with a WiFi
Module and mouse.

https://theretroarena.com/
https://github.com/RetroPie/RetroPie-Setup/wiki/Supported-Systems
https://drive.google.com/file/d/1TFph93l7XAiDkd94d-Kp0_a9qEHnaMsF/view?usp=drivesdk
https://forum.odroid.com/viewtopic.php?f=193&t=37281

Figure 7 - The ODROID-GO Advance is not only a gaming
device, but can also run a full version of Linux for use as
a portable computer

The latest version is available for download at
https://oph.mdrjr.net/meveric/images/Buster/Debia
n-Buster64-1.0~RC2-20200208.img.xz, and any
updates, bug �xes, and progress are posted at
https://forum.odroid.com/viewtopic.php?
f=193&t=37399.

Since there's constantly new development for this
image, and ODROIDs in general, the �rst thing you
should do after the image is up and running is to
install all updates:

$ apt update && apt upgrade && apt dist-upgrade

If you install a Desktop environment you should
already have keybord-con�guration installed, and it
will ask upon the �rst installation what keyboard
layout it should use. This con�guration is for your X11
Desktop so you have your desired keyboard layout.
For console you need to install console-setup to do
the same. The following commands will change the
keyboard layout and timezone:

$ apt-get install console-setup keyboard-

configuration

$ dpkg-reconfigure keyboard-configuration

$ dpkg-reconfigure tzdata

To enable WiFi, edit the �le /etc/network/interfaces or
create a new one under /etc/network/interfaces.d/
and add the following lines:

auto wlan0

iface wlan0 inet dhcp

wpa-essid

wpa-psk

If you're using a "hidden" network, please also add
“wpa-scan-ssid 1” You can turn this into a desktop
based image with X11/GBM GPU drivers using setup-
odroid, which allows for many applications and games
to run. You can even increase the desktop size by
using one of the following commands:

$ xrandr --output DSI-1 scale 1.5x1.5

$ xrandr --output DSI-1 scale 2x2

To scale the desktop to either 720x480 or 960x640,
which may look tiny but allows for even more
applications on the desktop.

Conclusion

The ODROID-GO Advance is a powerful yet tiny device
that is speci�cally designed for gaming, but can also
run a full Linux distribution with ease. The images
listed in this article are the early entries into operating
system ports for the device, and will continue to
evolve as the community grows. Make sure to check
back with each of the threads for updates and
improvements, and feel free to make contributions of
your own!

https://oph.mdrjr.net/meveric/images/Buster/Debian-Buster64-1.0~RC2-20200208.img.xz
https://forum.odroid.com/viewtopic.php?f=193&t=37399

ZFS Basics: Getting running on the ODROID-H2
 March 1, 2020  By Andrew Ruggeri  Linux, Tutorial

ZFS is an advanced �le system with many terri�c
features that are not available in many of the
traditional �le systems such as ext4. Some of the key
features found in ZFS are:

Pool drive storage, multiple disks can ‘merged’ into a
single �le-system.

RAID-Z, performs software raid functionality with a
variety of options even with as few as two disks.

Copy-on-write, this ensures that data on a drive is not
removed until it’s copy has been fully written. This
prevents data loss in the event that the system crashes
before the write has completed as the original data is
still present on the disk.

Snapshots, a snapshot contains the original version of
the �le system, and the live �le system contains any
changes made since the snapshot was taken.

Data Checksums, data written to ZFS has checksum
data associated with it to allow for veri�cation and
data restoration in the event of bit-rot or other
potential corruption problems.

ZFS was created and open-sourced originally by Sun
Microsystems back in 2001. However after Oracle
purchased Sun Microsystems, everything was moved
to being closed source. The OpenZFS project is a
result of this, it’s the continued open-source work
from the original Sun code by many of the original
engineers. Because of this, there has been a lot of
discussion regarding the open-source license that ZFS
uses and if it’s compatible for inclusion into the
mainline Linux kernel. Many Linux distributions have
chosen to include ZFS, for this guide we'll be using
Ubuntu as it’s readily available on all ODROIDs.

Several years ago, I looked into running ZFS on my
ODROID-XU4 Cloudshell 2, when I asked on the
forums I was let down to know the ODROID-XU4 just
wouldn’t cut it. However, now we have the ODROID-
H2, which is more than capable of the task at hand.
ZFS is fairly heavy in its memory use. The bulk of this
memory is used for cache, or the Advanced
Replacement Cache, ARC, to be speci�c. While some

online will say you need one GB of memory per TB of
capacity in the ZFS pool, others, including myself,
have found that to be a bit over the top. However, for
a setup like a NAS the more RAM you can allocate for
ZFS the better. Luckily, since the ODROID-H2 is
expandable to 32GB of RAM that gives a good amount
of �exibility.

Installation and setup

As mentioned earlier in this guide, we will be using
Ubuntu as our distro, more speci�cally Ubuntu Server
18.04 LTS. Once everything is installed and the
desired drives are attached we can pick up with the
steps listed below.

The �rst thing that needs to be done is to install ZFS
utilis via apt-get:

$ sudo apt install zfsutils-linux

Next, we can create the ZFS pool, or zpool, from the
attached drives. A ZFS pool is a con�guration of
drives.

ZFS supports many other con�gurations, I’ll outline a
few for a more thorough listing to �nd a more
particular con�guration please see one of the links at
the end of this guide. For instance the command
below with just the zpool create command with a list
of drives yields a RAID-0 con�guration in a pool
named ‘mypool’. Here the pool has only two drives
‘sdb’ and ‘sdc’, but more drives, if available, could be
added to the list:

$ sudo zpool create mypool /dev/sdb /dev/sdc

The following command will take two drives ‘sdb’ and
‘sdc’ and mirror them together in a pool named
‘mypool’:

$ sudo zpool create mypool mirror /dev/sdb

/dev/sdc

To help protect against data loss in the event of drive
failure in a system with more than multiple disks we
can take advantage of the ZFS RAIDZ types. RAIDZ,
this is similar to RAID-5 where one disk worth of
capacity is lost in the total pool size and only provides
protection for a single disk failure. RAIDZ2, this is
similar to RAID-6, with double parity and has the

advantage of protecting against two disk failures.
RAIDZ3, tripe the parity to provide protection against
three disk failures:

$ sudo zpool create mypool raidz /dev/sdb /

dev/sdc /dev/sdd /dev/sde /dev/sdf

Although the H2 has only two SATA points new
revisions, an expansion for additional SATA ports is
possible via NVMe adapters.

Helpful commands

Setting up a ZFS pool is fairly simple as we saw, luckily
most other commands are just as straight forward.
The following command is one of the most useful to
remember as it returns the status and the health of
your pool:

$ sudo zpool status

The output for this command should look as follows:

odroid@copenhagen:~$ sudo zpool status

[sudo] password for odroid:

 pool: poolc

 state: ONLINE

 scan: scrub repaired 0B in 1h0m with 0 errors on

Sun Feb 9 01:24:36 2020

config:

 NAME STATE READ WRITE CKSUM

 poolc ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sda ONLINE 0 0 0

 sdb ONLINE 0 0 0

errors: No known data errors

If everything is healthy, you should see ‘0’s, anything
else should be an indication that action is needed.
One of the potential commands to run would be a
scrub, which performs a data integrity check. A ‘-v’
argument can be passed as well for more verbose
output:

$ sudo zpool scrub mypool

Snapshots are a very helpful tool to create reference
points that you can later revert back to in the event of
a problem. The command below creates a snapshot

named ‘somelabel’ of the ‘/home/odroid’ directory in
the ZFS pool named ‘mypool’:

$ zfs snapshot mypool/home/odroid@somelabel

To view a list of all the snapshots available:

$ sudo zfs list -t snapshot

To reset your �le system, or in this case
‘/home/odroid’, to the state it was in when the
‘somelabel’ snapshot was taken, the following
command can be used:

$ sudo zfs rollback mypool/home/odroid@somelabel

References

This guide was intended to be a starting point to get
you familiar with ZFS and highlight some of the
features that set it apart. I would highly recommend
everyone interested to take a look at the Ubuntu ZFS
reference guide for further information as well as the
Ars Technica article (albeit a bit dated, the information
and writeup are terri�c).

https://wiki.ubuntu.com/Kernel/Reference/ZFS
https://arstechnica.com/information-
technology/2014/02/ars-walkthrough-using-the-zfs-
next-gen-�lesystem-on-linux/

https://wiki.ubuntu.com/Kernel/Reference/ZFS
https://arstechnica.com/information-technology/2014/02/ars-walkthrough-using-the-zfs-next-gen-filesystem-on-linux/

The G Spot: Your Goto Destination for All Things That are
Android Gaming: New ODROID-GO Advance Could “Go” Android
 March 1, 2020  By Dave Prochnow  Android, Gaming, ODROID-GO Advance

Lights, cameras, and ALL action; Hardkernel has a
new single board computer (SBC) portable star, again,
and it’s named the ODROID-GO Advance. Targeted as
a followup portable handheld gaming device to the
popular ODROID-GO 10th Anniversary ESP32
platform, the new ODROID-GO Advance is destined to
outshine every other SBC game machine currently on
the market. Why? It’s all in the speci�cations, my dear.

Figure 1 - The brand new shiny ODROID-GO Advance
handheld Linux-based gaming device. Photography
courtesy of Hardkernel

This is the initial foray by Hardkernel into the realm of
the Rockchip system-on-a-chip (SoC) lineup and it
looks like they’ve hit another “outta the park” homer
un with their SBC design. In particular, the ODROID-

GO Advance features the Rockchip RK3326 SoC. This
quad-core (64-bit) ARM-Cortex A35 processor is
running at 1.3GHz with overclocking ability (although,
Hardkernel claims overclocking is not practical with
attempts at 1.4GHz and 1.5GHz producing sketchy
results).

This SoC was announced at the Hong Kong Electronics
Fair 2017. At that time, it was destined for
incorporation into 2-in-1 tablets; which means that
this Rockchip choice is a very powerful SoC. Along
with this proposed tablet inclusion, the RK3326 SoC
was claimed to already have Android 7.1 support.
Meaning that both an Android OS and an Ubuntu
derivative OS are able to run on the RK3326. Couple
this little nugget of information with a rumor that I
just heard from a little bird and we can (or, should)
expect Android support coming “real soon after the
release” of the ODROID-GO Advance. Once this
Android release hits the ODROID community, you will
have the potential for a superior dual-booting
handheld phenom device.

Correction

Well, that didn’t take long. Just as this column was
going to press, I was informed that the “imminent”
release of the previously mentioned Android OS for
the ODROID-Go Advance has now been o�cially
shelved! Granted, another source could develop an
Android OS for this handheld, but, as of today, my
rumored developer is NOT going to continue working
on Android for the ODROID-GO Advance.

Figure 2 - Lots of ports to call, port-of-call; from left to
right: left shoulder trigger, power button, audio output
jack, GPIO, power jack, USB 2.0 Host port, and right
shoulder trigger. Photograph courtesy of Hardkernel.

Rounding out the rest of this game platform’s
speci�cations lends further support to the ODROID-
GO Advance potential for a destiny of greatness:

Quad-core Mali GPU

Support for 1GB DDR3 RAM (the memory interface is
32-bit)

SPI Flash storage

MicroSD card support

3.5-inch TFT LCD with 320x480 resolution

½ Watt Mono speaker with audio output jack

3,000mAh LiPo rechargeable battery

DC power jack for 2.5mm plug

USB 2.0 Host port

10-pin GPIO

10x Input buttons

D-Pad

Left/Right shoulder triggers

Analog joystick

All of this speci�cation goodness is packaged together
as a do-it-yourself (DIY) kit. Assembly is a lot more
�ddly than with the ODROID-GO ESP32 edition.
Beware of ribbon cable holder clamps, screw
tightness, and LCD insertion. Read the instructions
thoroughly before your begin assembly of the
ODROID-GO Advance.

Figure 3 - Your ODROID-GO Advance begins life as a sea
of parts awaiting your DIY stewardship. Photography
courtesy of Hardkernel

At the time of release, the ODROID-GO Advance will
operate with an Ubuntu Minimal EmulationStation OS
image. Remember, though, there is the distinct
possibility that an Android OS release could follow
close on the heels of this Ubuntu OS (see Correction,
earlier in this column; Ed.). This EmulationStation OS

is no slouch, however, as it will be able to support a
whole host of game emulators; including: Atari (2600,
5200, and 7800), GameGear, GameBoy, GameBoy
Advance, GameBoy Color, MegaDrive, Nintendo, PC
Engine, SEGA, and PSP.

Along with this o�cial Hardkernel EmulationStation
OS and the “potential” for an upcoming Android OS
release, the popular open source Batocera.linux OS
(Batocera) will also be available for the ODROID-GO
Advance. Enabling retro gamers of the world to
rejoice and embrace 8-bit and 16-bit games, Batocera
is ready-to-go with onboard emulators featuring
RetroArch, Kodi, mupen64, and PPSSPP. All that’s left
for you to do is the drudgery of locating ROMs for,
ahem, legal game play!

