

SDL2 With Screen Rotation: Hypercharge Your ODROID-GO
Advance's Graphics
 April 1, 2020

I have successfully ported SDL2 with internal screen rotation, so you don't need a
modi�ed build of PPSSPP or Emulationstation anymore.

Amiga Emulation Box: Turn Your ODROID-XU4 Into a 1980s Wonder
Computer
 April 3, 2020

This tutorial will show you how to set up an Amiga emulator on your ODROID-XU4 by
building your own copy of Uae4Arm and setting it up with kickstart ROMs and

Workbench �les from Amiga Forever or wherever you got your copy from. This tutorial assumes you have a
working ODROID-XU4

BMW oDrive Car PC
 April 1, 2020

I have been working on this project for almost a year now and feel con�dent enough
now to present it to the public - the almighty iDrive supplemental solution for all
people who do not have interest in �tting a 1500€ retro�t solution.

Running Linux Under Android
 April 1, 2020

The ODROID-N2 seems like a perfect Android TV system - everything runs smoothly
and converts a regular TV into a valuable smart TV. All is well if that is the only thing
you want to do with your ODROID-N2, but for me, it is not enough. I wanted to use

Shall We Play A Game? - Nintendo Drags Pokémon Into the 21st
Century...Kicking and Screaming
 April 1, 2020

Imagine being able to share, trade, and move your Pokémon between your games on
di�erent devices via a centrally-located, Internet-connected server. Sounds like some

really wacky, far-out, futuristic stu�, eh? Now you can with pokémon home.

Building An Xbox Using an ODROID-H2
 April 1, 2020

The OG Xbox rocked our world - we still call the media player 'the xbox' to this day.
After it was modded it became a media powerhouse that was way ahead of its time.
And now it is time to emulate it itself!

Retro-Go: Yet Another ODROID-GO Emulator Launcher
 April 1, 2020

Retro-Go is a launcher with NES/GB/GBC/SMS/GameGear/Colecovision emulators. The
emulator's code is based on Go-Play "Triforce" and the launcher's design is strongly
inspired by pelle7's; however, it isn't a fork.

Retro Roller: An Optimized Gaming Experience For Your ODROID-
GO Advance
 April 1, 2020

Retroroller is a pre-built image for the ODROID-GO Advance that provides RetroArch
32bit and 64bit on CrashOverride's one and only stock image. Among other tweaks, a

custom kernel is integrated that supports sleep. The idea with this image is to be able to update via a rolling
package release instead

WebThings on Armbian: Using the ODROID-XU4 for the Internet of
Things
 April 1, 2020

Mozilla WebThings is a platform for controlling home devices.

Modding Your ODROID-GO Advance for Wireless Charging: A Simple
DIY Project
 April 1, 2020

I added wireless charging capabilities to my ODROID-GO Advance.

Linux Gaming: GameStation Turbo Advance
 April 1, 2020

Here's what I call ODROID GameStation Turbo Advance. A feature packed gaming OS
for the ODROID-GO Advance utilizing X11 as a graphics backend and attract mode as a
frontend for emulators, games and tools.

SDL2 With Screen Rotation: Hypercharge Your ODROID-GO
Advance's Graphics
 April 1, 2020  By @AreaScout  Gaming, ODROID-GO Advance

I have successfully ported SDL2 with internal screen
rotation, so you don't need a modi�ed build of
PPSSPP or Emulationstation anymore. SDL2 will
report a screen resolution of 480x320. There are tons
of free games to �nd on GitHub, and probably some
good emulators using SDL2. There are also some
good open source GUI's, such as nanoguisdl, which
support SDL2 too.

Figure 1 - ODROID-Go Advance running PPSSPP using
SDL2 with screen rotation

Preparation

First, you will need the Mali GPU driver as as a deb
package, so that it won't be overwritten by the Mesa
libraries:

$ wget

https://oph.mdrjr.net/meveric/pool/go2/libm/libmal

i-rk/libmali-rk-bifrost-g31-rxp0-gbm_1.7-

1+deb10_arm64.deb

$ wget

https://oph.mdrjr.net/meveric/pool/go2/libm/libmal

i-rk/libmali-rk-dev_1.7-1+deb10_arm64.deb

$ sudo apt install ./libmali-rk-dev_1.7-

1+deb10_arm64.deb ./libmali-rk-bifrost-g31-rxp0-

gbm_1.7-1+deb10_arm64.deb

Installation

The �rst package is the runtime libraries, and the
second is the development package which contains
headers, in case you are about to compile
applications. The SDL2 library will install in
/usr/lib/aarch64-linux-gnu and will overwrite any
previously installed SDL2 library.

$ wget https://www.areascout.at/libsdl2-2.0-

0_2.0.10+dfsg1-1ubuntu1_arm64.deb

$ wget https://www.areascout.at/libsdl2-

dev_2.0.10+dfsg1-1ubuntu1_arm64.deb

$ sudo apt install ./libsdl2-2.0-0_2.0.10+dfsg1-

1ubuntu1_arm64.deb

$ sudo apt install ./libsdl2-dev_2.0.10+dfsg1-

1ubuntu1_arm64.deb

For comments, questions, and suggestions, please
visit the original article at
https://forum.odroid.com/viewtopic.php?
f=194&t=38045.

https://forum.odroid.com/viewtopic.php?f=194&t=38045

Amiga Emulation Box: Turn Your ODROID-XU4 Into a 1980s
Wonder Computer
 April 3, 2020  By Brian A. Ree  Linux

Things You’ll Need

An ODROID-XU4, either with a fan or heatsink

An ODROID-XU4 case

Either an eMMC chip or micro SD card

A microSD card writer or eMMC writer

Wi� Module; Module 0, 5A, and 4 are ok

USB mouse and keyboard

HDMI display

Internet Connection

Amiga Forever Plus Edition

A Windows computer

Tools Needed

Small screwdriver set

Introduction and Tutorial Goals

This tutorial will show you how to set up an Amiga
emulator on your ODROID-XU4 by building your own
copy of Uae4Arm and setting it up with kickstart
ROMs and Workbench �les from Amiga Forever or
wherever you got your copy from. This tutorial
assumes you have a working ODROID-XU4 running
Ubuntu 18.XX.

For help on writing an OS image to an SD card or
eMMC module please visit the links below. Make sure
you select the ODROID-XU4 tab when getting an
Ubuntu image.

https://wiki.odroid.com/odroid-
xu4/getting_started/os_installation_guide?
redirect=1#downloads Next, you will want to go
ahead and assemble the ODROID-XU4 case using the
directions found at
http://middlemind.net/tutorials/odroid_go/mr3_buil
d.html#part3. If you read each section listed above
that should get you all setup to begin working on

https://wiki.odroid.com/odroid-xu4/getting_started/os_installation_guide?redirect=1#downloads
http://middlemind.net/tutorials/odroid_go/mr3_build.html#part3

Amiga emulation on your ODROID-XU4 device. The
general cost of this project is around $140 depending
on the con�guration choices you make. Obviously if
you choose to use micro SD cards and don't need a
WIFI USB adapter you're going to spend less. This
tutorial works with Amiga �les that come with Amiga
Forever's plus package which costs around $30. I
highly recommend buying this package with all the
kickstart ROMs and Workbench �les you'll need to
emulate Amiga computers on just about any
emulation software, WinUAE, FS-UAE, Uae4Arm,
Uae4All, etc. You will need to have access to a
Windows computer to install Amiga Forever and grab
a copy of the necessary �les. After installing the
software you can locate the Amiga OS �les we need
from the following directory. You can also use your
own Amiga OS �les; just follow along and substitute
the proper �les, where needed.

C:UsersPublicDocumentsAmiga FilesShared

Make a copy of the following folder on a USB key or
one of your SD cards by using the micro SD to USB
adapter

�df
hdf

om - (Rename to kickstarts)

dirSystem

For those using their own Amiga OS �les you'll need
an A1200 3.1 Kickstart ROM, and a workbench 3.1 .adf
or .hdf �le. You'll also want to create the following
folders that will be populated with �les in just a bit.

dirGames

dirExtras

Now that you have all the �les you need, let's get
started setting up our ODROID-XU4 for Amiga
emulation and Amiga games.

Compiling Uae4Arm

First, grab a copy of the latest version of Uae4Arm
from the following URL: https://github.com/Chips-
fr/uae4arm-rpi. Click the download zip option as
shown below.

Figure 1 - Downloading the zip �le for uae4arm

Create two new folders in your home directory,
/home/odroid. FYI, the super user password is odroid
by default on the ODROID-XU4 OS images we're
using. We'll want to create a install_zips folder and a
uae4arm folder. When the uae4arm source code
�nishes downloading, copy the resulting uae4arm-rpi-
master.zip �le to the install_zips folder. Expand it and
move the resulting uae4arm-rpi-master folder to the
newly created uae4arm folder.

We'll need to install some packages before we can
compile the uae4arm code. Open a new terminal by
going to Menu -> System Tools -> MATE Terminal. Run
the following commands in the terminal window.

$ sudo apt-get install libsdl1.2-dev -y

$ sudo apt-get install libguichan-dev -y

$ sudo apt-get install libsdl-ttf2.0-dev -y

$ sudo apt-get install libsdl-gfx1.2-dev -y

$ sudo apt-get install libxml2-dev -y

$ sudo apt-get install libflac-dev -y

$ sudo apt-get install libmpg123-dev -y

$ sudo apt-get install libmpeg2-4-dev -y

$ sudo apt-get install autoconf -y

$ sudo apt-get install libgles2-mesa-dev -y

$ sudo apt-get install libgles1 -y

$ sudo apt-get install libgles2 -y

$ sudo apt-get install libglvnd-dev -y

Or if you want to get it all done in one big command...

$ sudo apt-get install libsdl1.2-dev -y;sudo apt-

get install libguichan-dev -y;sudo apt-get install

libsdl-ttf2.0-dev -y; sudo apt-get install libsdl-

gfx1.2-dev -y;sudo apt-get install libxml2-dev -

https://github.com/Chips-fr/uae4arm-rpi

y;sudo apt-get install libflac-dev -y; sudo apt-

get install libmpg123-dev -y;sudo apt-get install

libmpeg2-4-dev -y;sudo apt-get install autoconf -

y; sudo apt install libgles2-mesa-dev -y;sudo apt

install libgles1 -y;sudo apt install libgles2 -

y;sudo apt-get install libglvnd-dev -y;

Navigate to the uae4arm-rpi-master directory using
the following command.

$ cd /home/odroid/uae4arm/uae4arm-rpi-master

Next we're going to compile uae4arm by running the
following command in the terminal with the current
directory set to the uae4arm-rpi-master directory.

$ make PLATFORM=gles

Allow the compilation to run its course and when it
completes you should have a new �le in the uae4arm-
rpi-master directory named uae4arm. Copy the adf,
hdf, dir, and kickstarts folders mentioned earlier from
your USB drive or whatever you're using, to the
uae4arm folder. You should have the following folder
structure. If you aren't using Amiga Forever create the
following directory structure and put your .adf �les,
games, Workbench, etc in the adf folder. Similarly
place any .hdf �les, drive images, etc, into the hdf
folder. Your kickstart ROM �les go into the kickstarts
folder. The Games folder will be used for hard drive
games and WHDLoad prepped games. Extras will be
used for Amiga programs and �les we'll need to
transfer into the boot .hdf drive. System is used
speci�cally for bootable .hdf �les.

- uae4arm - uae4arm-rpi-master - adf - hdf - kickstarts
- dir - System - Extras - Games

You should have the following folder setup in your
odroid home directory and the following folders in
the uae4arm directory.

Figure 2 - You should have two folders ‘install_zips’ and
‘uae4arm’

Figure 3 - The content of the ‘uae4arm’ folder

Figure 4 - The content of the ‘dir’ folder

We'll need a few pieces of software for some of the
Amiga OS con�guration steps I'm going to show you.
You can download WHDLoad at this URL:
http://whdload.de/. Download the WHDLoad_usr.lha
�le from the main page. When the download
completes, move the �le from the Downloads folder
to the uae4arm/dir/Extras folder.

The WHDLoad site is shown below.

Figure 5 - The WHDLoad website

Next we'll need an Amiga decompression tool called
lha. You can download a copy directly at the following
URL: lha.run. When the �le download is complete
move the resulting �le into the uae4arm/dir/Extras
folder.

The last thing we'll need are some games to test. Most
of the Amiga software library is considered abandon-
ware since it's a dead platform. For this tutorial, you'll
need to �nd some .adf games for Amiga 500, 1000, or
1200. You'll also need to download some games
prepped for the WHDLoad software from this URL
WHDLoad Games. The games must come from the
WHDLoad directory.

The game download site is as shown below.

Figure 6 - Download site website

What WHDLoad does is it launches Amiga games from
the hard drive and not from a disk image so you can
have a whole collection loaded on your emulated
Amiga OS. It also soft kicks the game's required
kickstart ROM version. This way you won't have to
load a new disk every time you want to play a game.

Go back to the terminal window or open up a new
one. Navigate to the uae4arm-rpi-master folder, cd
/home/odroid/uae4arm/uae4arm-rpi-master. Next
start uae4arm by running ./uae4arm. This will execute
the binary �le you compiled earlier. If you get an error
that the �le cannot be executed run the following
commands in the terminal.

sudo chmod 755 ./uae4arm

sudo chmod +x ./uae4arm

Run the ./uae4arm command again and you should
see the Uae4Arm launcher window popup as shown
below.

Figure 7 - ROM Selection

Con�gured Uae4Arm

In this section, we'll work on con�guring Uae4Arm so
that we have a stable Amiga emulator running which
we can use to launch a bunch of games. Before we
get into the details, we're going to need two more
�les. The create hard drive �le feature of Uae4Arm
seems broken, so we'll have to work around it. Go to
this URL: https://scruss.com/blog/2010/02/07/amiga-
blank-hdf-images/ and download both the 80MB and
160MB blank hard drive �les.

https://scruss.com/blog/2010/02/07/amiga-blank-hdf-images/

Figure 8 - hdf �les

When the �les are done downloading, move them
from the Downloads folder to the install_zips folder.
Expand the �les. When this is done move the resulting
�les to the hdf folder under the uae4arm directory.

Now we'll set the proper con�guration to create a nice
A1200 emulated Amiga system. Go to the Quick Start
con�guration section and select A1200 from the list.
Next go to the CPU and FPU section. Make sure JIT is
selected under both CPU and FPU sections. Select the
Fastest option for the CPU speed and set the FPU to
68882.

Next, go to the ROM section and load the amiga-os-
3101-a1200.rom �le from the kickstarts folder. You
can also use an equivalent �le if you have one, the �le
we're using we got from:
https://www.amigaforever.com/ ; this �le, and many
more, come with their plus o�ering. The screenshot
below shows the ROM screen with the proper �le
selected.

Figure 9 - Rom Selection

Next we'll con�gure the RAM section. Go to the RAM
section and slide the Chip RAM to 8MB as shown

below.

Figure 10 - RAM Settings

Now we'll load up some hard drives. The �rst drive
will be our boot drive. Navigate to the dir/System
directory and select the workbench-311.hdf. Again
this �le comes from the Amiga Forever package but
you can use a bootable .adf version if you have one or
another bootable hard drive that has Workbench 3.1
on it. The screenshot below shows the drive
con�guration.

Figure 11 - Hard Drive Settings

The next hard drive we want to load up is one of the
blank drives we downloaded from the Internet. I
would go with the 160MB one. Load it up into the list
of drives and make sure to unselect the bootable
option. What I'm going to show you how to do here is
copy over a smaller boot drive onto a larger blank
drive then use that one as a boot drive. Uae4Arm
does a really good job at emulating A1200 and earlier
machines, but I can't get the A4000 entries to work.
The software is at version 0.5 and might need some
work. One other quirk is that it can't write new �les or
folders to directory based drives; there is a mode
error that crashes the application. A workaround is to

https://www.amigaforever.com/

use a hdf based drive. So our goal is to create a new
larger boot drive so we can move around some
games and install some new software.

Let's con�gure the screen size and set the emulator to
use the largest possible size under the Display
con�guration section. The screenshot below shows
the largest possible screen size with an 8MB A1200
and no graphics card. Next, let's set up the input. Go
to the Input con�guration section. Setup the input
how you want, I used the following con�guration to
start since all the mappings go directly to keys with
the same name.

Figure 12 - Input Settings

One last thing to do before we �re up our Amiga
A1200 is go back to the Con�gurations section and
click the Save button. You can change the
con�guration name but I just use the default.

Figure 13 - Con�gurations Settings

Now that you have everything all con�gured and
ready to go click the Start button and you should see
a nice clean Amiga A1200 Workbench loaded up as
depicted below.

Figure 14 - Amiga Workbench

Running *.adf Format Amiga Games

Now the A1200 can run, for the most part, A500,
A600, and A1000 games. However, not every one of
them will work. Some may require a speci�c chipset,
but most should work “out-of-the-box.” To load up
and run an .adf format game press the F12 key, or
whichever key you mapped in the Input con�guration
section.

Go to the Floppy drives con�guration section and
select an .adf game you want to play. You can even
check the Load con�g with the same name as disk
option to create speci�c con�gurations for the given
disk/game. For now, leave that option unchecked.
Select your game disk as shown below.

Figure 15 - Floppy Disk Settings

Click the Resume button if you already started your
A1200 emulation or click the Start button. You should
see a �oppy disk icon on the Workbench desktop.
Double click it to open it. Hold down the right mouse
button while your mouse is at the workbench header,
hover over Window, then Show, and select All Files.

Now you should be able to see all �les on the game
�oppy disk you loaded. Find the game executable and

double click it. You should now be able to play the
selected game on your ODROID-XU4 powered Amiga
A1200 emulator. If the game crashes you may need to
look up speci�c hardware requirements for that game
and adjust your emulator's con�guration to meet
those needs.

The following screenshot shows the crack screen of a
game I've loaded up from a �oppy disk image, .adf
�le.

Figure 16 - Alien Syndrome

Using WHDLoad to Run Games

In this section we'll cover how to run Amiga games
from the hard drive using WHDLoad. This approach
has the added advantage of using a soft kick to launch
the game with the proper kickstart ROM. You'll need
to have a workbench boot drive and an empty
harddrive, .hdf, that we downloaded earlier. I'm not
sure if this process will work with a bootable
workbench �oppy disk, it might. I just haven't tried it.

So I used the Workbench-311.hdf from my copy of
Amiga Forever but it's only about a 9MB drive. You'll
run out of space very quickly. To create a new
bootable drive with more free space, I've loaded up
the 160MB blank .hdf drive, and we're going to clone
the boot drive onto it.

My initial harddrive setup is shown below. The key
things to remember are that we only use "directory"
based harddrives as a source for �les. We won't be
creating any new �les or folders on them. So the
Extras folder is where we'll store new Amiga software,
DH4. The �rst drive is a smaller, but, precon�gured
boot drive, DH2. Lastly the new blank 160MB
harddrive is going to be our new boot drive and will

eventually hold all the new Amiga software we need,
DH3.

Figure 17 - Hard Drive Settings

Find the AmigaSHELL program, it should be in the
Workbench 3.1 drive's System folder. Double click the
Shell icon. And run the following command.

Figure 18 - AmigaShell

The AmigaSHELL command is copy : hd160: all clone
quiet, where the second drive name, hd160 is
whatever name your 160MB drive was assigned. This
command will clone the drive and create a new
bootable drive. When it completes you can close your
emulation session and then remove the smaller drive
and map the larger 160MB drive as the boot drive.

You're also going to map a new drive based on the
Extras directory. This directory should contain the
lha.run, and WHDLoad.lha �les. You should also map
the Games directory that has the WHDLoad prepped
games. So you'll have a total of three drives listed
below.

1. Larger boot drive, 160MB, based on .hdf 2. Extras
drive, based on directory dirExtras 3. Games drive,
based on directory dirGames

Since I've had trouble creating new �les and folders in
a directory based drive, not sure what was the cause. I
always copy the programs I need to run to the boot
.hdf drive. So in this case drag and drop the lha.run,
WHDLoad.lha, and target game .lha �les to the boot
drive.

If you can't see the �les in any drive or folder you're
viewing simply right-click in the Workbench 3.1
header and while holding the button down drag the
cursor to Window, then Show, and select All Files.

Once the �les have copied over, run the lha.run
program by double clicking on it. Make sure you're
using the copy that's on the boot drive. Once it has
completed installing, open up a new AmigaSHELL and
type lha and press enter. You should see a list of
arguments for the command.

Figure 19 - Execute a �le

Figure 20 - Output Window

You should be on the root of the boot drive and that's
where WHDLoad should have been copied. From the
AmigaSHELL, run lha x WHDLoad.lha. Let the
expansion run and when it's complete �nd the
WHDLoad folder on the boot drive. Open it and run
the Install program. You can choose options to run

the install as a test and not actually install it. That's
�ne to do �rst to make sure everything runs
smoothly. Complete a real install and you're almost
ready to run WHDLoad prepped games. I'm not going
to cover how to convert .adf games to WHDLoad
games in this tutorial. Using the links above will get
you a whole bunch of games prepped for WHDLoad.

We're going to need to download one more piece of
software before we can launch a WHDLoad game,
however. Navigate your browser to:
http://aminet.net and search for skick. Download a
copy of the program as shown as follows.

Figure 21 - The aminet.net website

Shutdown your Amiga A1200 emulator and copy the
new skick346.lha �le into the Extras directory with the
other Amiga programs. Start up your A1200 and copy
the skick346.lha �le to the boot drive. Open up a shell,
Workbench 3.1 -> System -> Shell. Create a new folder
on the boot drive named kickstarts. Expand the �le by
running this command in the shell, lha x skick346.lha
:kickstarts. Use the full name of the skick �le you've
downloaded if you have a di�erent version.

Also, while you have the shell open, expand the
WHDLoad prepped game by running lha x
name_of_game.lha. Now you should have new folders
on the boot drive. Run the WHDLoad prepped game
�le and you'll get some errors that look like the
following.

DOS-Error #205 (object not found) on reading

"devs:kickstarts/kick40068.a4000

http://aminet.net/

Make a copy of the a4000, or a500, or whatever
missing kickstart �le is indicated and move it into the
boot drive in the same way you've moved the other
Amiga programs. Copy it into the kickstarts folder on
the boot drive. Make sure that it has been renamed to
match the error. In my case the error was a missing a
kick34005.a500 �le so I used a 3.X kickstart ROM from
the Amiga Forever set of included ROMs. For more
information on which kickstart ROM to use with
regard to Amiga Forever go to this URL:
http://www.whdload.de/docs/en/need.html.

You'll need to create a symbolic link so that the devs:
drive exists. Open up AmigaSHELL and run the
following command, ASSIGN devs: hd0:, where the
drive named hd0 is the name of your boot drive or
the location of the kickstarts folder. Now you should
have the path devs:kickstarts mapped, and no longer
get the missing kickstart error that was shown above.

Figure 22 - Assigning devs

Once you get past that error, run the WHDLoad
prepped game again. If you get an error about a
missing RTB �le then double check that you
decompressed the skick346.lha archive into the
proper location. If you still get a kickstart ROM error
then double check that you have copied and properly
renamed the correct kickstart ROM �le. Also, make
sure that you have used the ASSIGN command
correctly so that you have a devs:kickstarts drive and
folder that contains RTB �les and kickstart ROMs.

The Devs folder should look like what's shown below.
It now contains the kick ROM you copied there and all
the RTB con�guration �les from the soft kick Amiga
program.

Figure 23 - Devs

I used a helicopter game that was WHDLoad prepped
and completed the above mentioned steps. The
screenshot below shows the game up and running.
Loaded cleanly from the hard drive giving us the
ability to run a bunch of games quickly and easily
right from the emulated Amiga system, no �oppy
drive swapping.

Figure 24 - Launching tankKiller3D

Figure 25 - Time for some fun

For more information, please visit the original article
at
http://middlemind.net/tutorials/odroid_go/mab_buil
d.html.

http://www.whdload.de/docs/en/need.html
http://middlemind.net/tutorials/odroid_go/mab_build.html

BMW oDrive Car PC
 April 1, 2020  By @FntX  Tutorial

I have been working on this project for almost a year
now and feel con�dent enough now to present it to
the public - the almighty iDrive supplemental solution
for all people who do not have interest in �tting a
1500€ retro�t solution.

The Project consists of the following:

Odroid N2 4GB with 32GB eMMC and Android as the
car-pc itself

Odroid VU7a+ Screen

Screen casing assembly to be �tted as a replacement
for the small glove box on the dashboard (See:
https://www.ebay.de/itm/Monitorhalter-f ...
1438.l2649)

iDrive 7-Button Controller (Facelift)

Matching center console assembly for the iDrive
Controller

Custom command & control board with: Arduino Nano
33 IoT, RN42HID Bluetooth Module, MCP2515 +
TJA1050 CAN interface, INA219 voltage sensor, 2 pwm
headers for fans (See: https://github.com/Neuroquila-
n8fall/od ... rpc-nano33)

Teltonika RUT850 automotive 4G access point

LTC3780 power supply module

A few wires to connect everything

A little bit of tinkering

Figure 1 - Fitted VU7a+ Display on the dashboard
running Torque App

Note the pin header on the power button side (left
hand side). I have soldered these on to have a proper
connection for triggering the power button remotely.

Figure 2 - VU7a+ mounted inside dash casing

At the heart of the project is the Odroid N2 itself. It
resembles the computer which can be found on the
iDrive system as well. It does not do much, however,
because it is either on or o� and any change to the
power state would mean pushing a button of some
sort. It works on its own but to get an integrated
solution the N2 has to be powered on or o�
depending on the current state of the car and "drivers
demand". Also it has no integrated 4G connectivity
which makes it, at �rst sight, useless as an
infotainment system with navigation and streaming
services.

Since there are harsh conditions inside a car, it has to
be supplied by a power supply which not only delivers
enough power but also has a high input tolerance and
temperature range. At this point I am very surprised
the N2 itself holds together quite nicely under these
conditions!

Startup and Shutdown in a Car

We could trigger the power by checking components
that will come online if the car is opened or the
ignition is turned on. This would mean that as soon as
we launch the engine, the PC would start. This would
work but is not the same as we know it from the
original iDrive system. It boots very fast and we simply
cannot achieve these speeds if we want to keep the
android system as it is.

So I decided to hack into the CAN Bus of the car and
check if I can get any messages that would tell what
the current state of the car is and what is expected.
This way we could start the N2 as soon as we push
the "open" or "close" button on the key fob. The time
it takes to walk up to the car the N2 has enough time
to boot up and as soon as we enter the car it is ready
to do its job.

I have also tinkered with the possibility to have the pc
always on and put it to sleep or shut it down if the
battery is too low. Simply put this did not work out in
the end because I swapped to a Due MCU and could
not make it work with a matching voltage divider
network to monitor the battery. The code still exists
but now that I have all the correct facilities in place, I
could re-activate the mechanisms.

Screen Brightness

A problem when driving a car is that the light
conditions change continuously. This makes it hard to
read a display and that is the reason why we are now
slowly seeing big displays coming to cars. They are
replacing entire dashboard instruments. These
screens need to be glare-resistant, very bright and
robust. However, that is not the whole story. The
screen needs to adapt to the actual outside light
levels so the display is readable at bright sunlight and
does not dazzle you at night.

Usually we would rely on a photo-diode to measure
light levels and react on them but in this case, since
we are already on the CAN Bus of the car, we can use
the light level sensor on the windscreen. This is a
whole module �tted on the foot-end of the rear-view
mirror called "RLS" (Regen-Licht-Sensor = Rain-Light-
Sensor). It reports the current light levels at intervals
or when it changes. We can use that to feed in a PWM
signal to the VU7a(+) backlight regulator as described
on the Wiki (https://bit.ly/2UAzK1z).

Command & Control Board

The "Command & Control" module is the interface
between the Car and the N2. It bridges the gap
between the Android system and the Cars CAN-bus
network and takes care of all the tasks that would
otherwise mean a customization of the android
system or writing apps. The �rst iteration of the
control board was a mixture of a loose Arduino Due,
Bluetooth module and MCP2515 CAN Interface
module. What a mess!

https://bit.ly/2UAzK1z

Figure 3 - This is the �rst iteration. It is really a complete
mess but somehow I needed an evaluation platform.

Figure 4 - One year later, the whole thing is going to be
"�nal"

The source code and detail can be found at the
Github repo: https://bit.ly/2QMx7bR. I will upload
more pictures of the whole setup on the forum later,
when I am �nally able to swap out the cable mess
with the integrated board. For more information,
please visit the original post at
https://forum.odroid.com/viewtopic.php?
f=182&t=37944.

https://bit.ly/2QMx7bR
https://forum.odroid.com/viewtopic.php?f=182&t=37944

Running Linux Under Android
 April 1, 2020  By Adrian Popa  Android, Linux, Tutorial

The ODROID-N2 seems like a perfect Android TV
system - everything runs smoothly and converts a
regular TV into a valuable smart TV. All is well if that is
the only thing you want to do with your ODROID-N2,
but for me, it is not enough. I wanted to use the
ODROID-N2 to replace an ODROID-C2 that was
running Linux, had some sensors (temperature and
PIR) attached to its GPIO pins, and also ran Kodi. I
could have used Linux on the ODROID-N2, but the
Android TV experience was nicer for a media center.

So I embarked on a new journey of learning how to
make Android and Linux coexist on the same
hardware so that I could easily transfer my linux
scripts that handled the sensor data from ODROID-C2
to ODROID-N2.

If you are starting your project from scratch you
should look into Hardkernel's Android Things API
implementation
(https://magazine.odroid.com/article/android-
things/) and build native Android apps that use the

GPIO pins, but in my case I already had some python
scripts that read temperature and movement data so
I wanted to reuse them (https://bit.ly/2xhnGdH).

Installing Linux under Android TV

In order to port existing scripts to Android It is better
to install a Linux environment in a chroot. The best
app for the job is Linux Deploy
(https://bit.ly/2UbeKPV) which you can �nd on the
Play Store, but unfortunately It is not available for
Android TV. You will need to download the apk from a
di�erent source (I used apkpure
https://bit.ly/2wuiHGq) and install it on ATV. To install
an apk package you have two options:

Copy the apk �le on a USB drive, attach it to the ATV
and use a �le explorer (there are some options
available on the Play Store) to install it.

Or install it via adb (either with a usb cable, or over the
network):

https://magazine.odroid.com/article/android-things/
https://bit.ly/2xhnGdH
https://bit.ly/2UbeKPV
https://bit.ly/2wuiHGq

$ adb connect odroid-ip

$ adb install ~/downloads/Linux

Deploy_v2.6.0_apkpure.com.apk

I am using voodik's ATV image (https://bit.ly/3bkj3OI)
with adb enabled over the network.

Once Linux Deploy is installed, use a mouse/keyboard
(it is not designed for ATV and remote control input
does not cover all options) to set up and deploy a
Linux distribution of your choice on the ODROID. If
you do not have access to a suitable input device you
can install scrcpy
(https://github.com/Genymobile/scrcpy) and access
Android in a remote-desktop-like fashion from your
computer. You may also need to install an extra
launcher that sees non ATV apps, like Sideload
Launcher
(https://play.google.com/store/apps/details?
id=eu.chain�re.tv.sideloadlauncher&hl=en).

Start the app and select the properties icon and set
up your environment. Note that it requires root
access, so make sure to grant it root. Here you can
choose your favourite distro (I used Ubuntu 18.04),
you can choose the size of the rootfs image (I went
with 8G) and set up default credentials.

Figure 1 - Linux deploy con�guration properties

Under the INIT section make sure you Enable an
initialization system. I went with sys-v which uses
scripts in /etc/rc3.d/.

Under the mount options I wanted to expose some
android settings to the guest Linux image, so I
mapped / and /sdcard to internal mount points in
Linux. Fortunately /dev and /sys are already shared.

Figure 2 - Linux deploy mount points

In theory you can install in a directory and bene�t
from all the host's space, but for me that option did
not work.

When you are ready you can select Start and the
program will start downloading the required packages
and build a minimal image for you. This may take a
while, but when It is done you can go ahead and start
that image. If you have enabled ssh you should now
be able to log in to your ODROID's IP with ssh on port
22. Now you can use apt to update the package list
and install the packages you need.

In my case I needed python3 and a bunch of python
modules, so I installed them with:

apt-get install python3-pip python3-paho-mqtt

Since I need to use the GPIO pins, I wanted to install
Hardkernel's wiringpi branch for the ODROID-N2. The
simplest way to do it (without compiling anything) is
to grab it from Hardkernel's PPA as described in the
wiki at https://wiki.odroid.com/odroid-
n2/application_note/gpio/wiringpi:

apt install software-properties-common

add-apt-repository ppa:hardkernel/ppa

apt update

apt install odroid-wiringpi odroid-wiringpi-

python

Once installed, verify that wiringpi can access the
GPIO pins and read their state

gpio readall

If all is well, transfer over your scripts and hook up the
hardware. In my case I am using a DS18B20
temperature sensor
(https://www.adafruit.com/product/381) that uses
one-wire for communication and a HC-SR501
(https://www.hardkernel.com/shop/motion-
detector-hc-sr501/) PIR sensor. The PIR sensor is the
easiest to work with since it requires a GPIO pin set to
input and you can simply read its state. I am using

https://bit.ly/3bkj3OI
https://github.com/Genymobile/scrcpy
https://play.google.com/store/apps/details?id=eu.chainfire.tv.sideloadlauncher&hl=en
https://wiki.odroid.com/odroid-n2/application_note/gpio/wiringpi
https://www.adafruit.com/product/381
https://www.hardkernel.com/shop/motion-detector-hc-sr501/

physical pin 12 which corresponds to wiringpi pin 1 if
you consult the mapping
(https://wiki.odroid.com/odroid-
n2/hardware/expansion_connectors).

The temperature sensor is a bit more di�cult to get
working because it needs onewire support in the
kernel. In my case the ATV kernel at that time did not
have onewire support enabled:

$ zcat /proc/config.gz | grep -i W1

CONFIG_W1 is not set

So check out the upcoming section about kernel
compilation and �ashing.

Once your programs are running correctly, you need
to start them up when Linux starts (Linux Deploy
takes care of starting it when Android starts if you
enable autostart in Linux Deploy's settings).
Unfortunately, since Linux Deploy runs in a chroot if
you use the service command under Linux to start
and stop services you will get a notice that It is
running under a chroot and will not do anything. In
my case, I needed only two scripts, so I had to create
sys-v scripts for my processes. You can get a script
template from https://github.com/fhd/init-script-
template. Create /etc/init.d/pir-mqtt-agent, con�gure
it to point to your script, make it executable and link it
to /etc/rc3.d:

chmod a+x /etc/init.d/pir-mqtt-agent

cd /etc/rc3.d/

ln -s ../init.d/pir-mqtt-agent S10pir-mqtt-agent

SYS-V may seem archaic, but it was �ne for the past
20 years, and it is easier to understand than systemd.
However, what if the scripts fail for some reason (e.g.
the sensor is no longer there, network is o�ine, etc)?
Without systemd to do service housekeeping there is
nobody there to restart your dead scripts. I went the
quick and dirty route and set up cron to periodically
restart the scripts (even if they are not dead). That
works �ne for my needs, but this needs to be looked
into, to create a more robust process management
system.

crontab -l

0 * * * * /usr/sbin/service pir-mqtt-service

restart

Compiling the Android kernel

Compiling the Android kernel is almost the same as
compiling the Linux kernel, but it has some quirks.
Some of the most important changes are:

compilation is done on a x86_64 system (cross
compilation)

the zImage needs to be combined with a initrd and
packed into a 16M boot image

the boot image needs to be �ashed to the Android
boot partition

the dtb lives in a dtbs partition and needs to be �ashed
too in case you are making changes to it.

First you will need to set up your cross compilation
environment. Assuming you are on a Ubuntu 18.04
x86_64 system you can:

$ sudo apt-get -y install bc curl gcc git libssl-

dev

 libncurses5-dev lzop make u-boot-tools device-

tree-compiler

$ mkdir ~/toolchain

$ cd ~/toolchain

$ wget

https://releases.linaro.org/components/toolchain/b

inaries/6.3-2017.02/aarch64-linux-gnu/gcc-linaro-

6.3.1-2017.02-x86_64_aarch64-linux-gnu.tar.xz

$ unxz gcc-linaro-6.3.1-2017.02-x86_64_aarch64-

linux-gnu.tar.xz

$ tar xvf gcc-linaro-6.3.1-2017.02-x86_64_aarch64-

linux-gnu.tar

Next, download the Android kernel source:

$ mkdir ~/development

$ cd ~/development

$ git clone --depth 1

https://github.com/hardkernel/linux.git -b

odroidn2-4.9.y-android

$ cd linux

Now, set some environment variables so that the
build environment knows that it needs to use the
cross compiler. You will need to rerun these
commands each time you start a new terminal (they
are not persistent):

$ export ARCH=arm64

$ export CROSS_COMPILE=aarch64-linux-gnu-

https://wiki.odroid.com/odroid-n2/hardware/expansion_connectors
https://github.com/fhd/init-script-template

$ export PATH=~/toolchain/gcc-linaro-6.3.1-

2017.02-x86_64_aarch64-linux-gnu/bin/:$PATH

You can now start from a base con�guration - usually
by doing this inside the Linux directory:

$ make odroidn2_android_defconfig

If you want to start with a di�erent con�g, you can
extract the current kernel con�guration from the
running Android system from /proc/con�g.gz, gunzip
it and save it as ~/development/linux/.con�g.

You can now run

$ make menuconfig

Figure 3 - make menucon�g

Here you can search for the items that you need and
enable them. For e�ciency reasons you can �nd
where a con�guration option is in the menu by typing
'/' and typing in the option name (e.g. in my case W1 -
short for onewire). The output will tell you where you
can �nd that option (in my case under Device Drivers),
what its current state is and if it depends on other
options (and what their states are). If you cannot �nd
an option in the menu it is most likely hidden because
one if its dependencies isn't met. By using the search
function you can �nd which dependency is missing.

Figure 4 - searching kernel options

Once you get to the menu you can �nd the item by
pressing ALT and the highlighted shortcut letter and
you should navigate through all options in the visible
menu that share the same shortcut.

When enabling an option you generally have two
choices - built-in or as a module. Traditionally, Linux
uses modules and has the capability to auto-load
modules on demand, but Android is a bit di�erent
and though it can use modules it does not auto-load
them. The easiest choice is to build it in, but if you
need too many options it might make the kernel grow
in size too much and it will not �t (together with the
initrd) in the 16M boot partition.

If you will build modules you will need to manually
locate the module in the build environment (e.g.
drivers/w1/masters/w1-gpio.ko) and copy it to
/vendor/lib/modules/ on the Android side. Note that
the /vendor partition is mounted read-only and needs
to be remounted before copying:

:/ # mount -o remount,rw /vendor $ adb push
drivers/w1/masters/w1-gpio.ko /vendor/lib/modules/

To load new modules at startup you will need to edit
init.odroidn2.system.rc as described here:
https://github.com/codewalkerster/android_device_
hardkernel_odroidn2/blob/s922_9.0.0_master/init.o
droidn2.system.rc#L96

For my needs (onewire support) I needed to enable
the following modules (and have them built-in):

CONFIG_W1

CONFIG_W1_MASTER_GPIO

CONFIG_W1_SLAVE_THERM

https://github.com/codewalkerster/android_device_hardkernel_odroidn2/blob/s922_9.0.0_master/init.odroidn2.system.rc#L96

Ok, now that the kernel con�guration is done, you can
save it and start building the kernel:

$ make -j$(nproc)

The compilation should take a while the �rst time, but
subsequent runs should compile only the di�erences.
Have a look for any errors, but if it builds correctly
you should get a
~/development/linux/arch/arm64/boot/Image.gz.

$ ls -l

~/development/linux/arch/arm64/boot/Image.gz

If you need to make changes to the dtb (e.g. enable or
change settings), you can use fdtput (part of device-
tree-compiler package) to make changes to the dtb. In
my case I need to explicitly enable one-wire support
in the dtb, otherwise the driver will not do anything:

$ fdtput -t s

~/development/linux/arch/arm64/boot/dts/amlogic/me

son64_odroidn2_android.dtb /onewire status okay

Once the kernel and dtb are in order, we need to
prepare the bootimg. To do this, �rst extract the boot
partition from the working ATV version, so that we
can keep the initrd from the original image. Next we
install bootimg which is a tool for packing and
unpacking Android boot images.

$ adb shell

if=/dev/block/boot of=/dev/shm/boot.img

exit

$ mkdir ~/development/bootimg

$ cd ~/development/bootimg

$ adb pull /dev/shm/boot.img

$ sudo apt-get install abootimg

We can now inspect the boot.img and extract the
initrd and con�guration:

$ file boot.img

boot.img: Android bootimg, kernel (0x1080000),

ramdisk (0x1000000), page size: 2048, cmdline

(otg_device=1 buildvariant=userdebug)

$ abootimg -x boot.img

The �nal step is to create the new bootimg with the
new kernel:

$ abootimg --create boot-new.img -f bootimg.cfg -k

~/development/linux/arch/arm64/boot/Image.gz -r

initrd.img

Ok, now you are ready to �ash the new kernel and
dtb:

$ adb push boot-new.img /dev/shm

$ adb push

~/development/linux/arch/arm64/boot/dts/amlogic/me

son64_odroidn2_android.dtb /dev/shm

$ adb shell

dd if=/dev/shm/boot-new.img of=/dev/block/boot

dd if=/dev/shm/meson64_odroidn2_android.dtb

of=/dev/block/dtbs

Once you reboot your new kernel should take over
and you can check that you get the functionality that
you need. If it does not reboot you will need to
recover the board by �ashing the previous boot.img
by using fastboot mode. Enjoy your Linux server with
an Android TV GUI!

Shall We Play A Game? - Nintendo Drags Pokémon Into the 21st
Century...Kicking and Screaming
 April 1, 2020  By Dave Prochnow  Gaming, Tutorial

Imagine being able to share, trade, and move your
Pokémon between your games on di�erent devices
via a centrally-located, Internet-connected server.
Sounds like some really wacky, far-out, futuristic stu�,
eh? Well, maybe if this headline screamer had been
announced in early 1999, it might’ve been. Rather, this
is a completely valid “service” announcement that has
been recently released by Nintendo. They even have
the temerity to label this cloud service as Pokémon
HOME.

Located at http://home.pokemon.com, the website
o�ers an introduction to Pokémon HOME, as well as
an explanation of the two available subscription
services that details the di�erences between the
Nintendo Switch and the Android versions. To use the
Android version and take advantage of the new cloud
service, you will need to go to Google Play and
download the free Pokémon HOME app and
subscribe. Figure 1 - Pokémon HOME

http://home.pokemon.com/

Right o� the bat, you have a choice for your
subscription plan: free or paid. The free plan is
feature-rich enough to use right away with your
Pokémon collection. You can easily opt for the free
plan and test the Pokémon HOME waters before you
jump in with your credit card.

The available plans are Basic (the free plan) and
Premium (the paid plan). The Premium plan
subscription is available for one month at $2.99, three
months for $4.99, and one year for $15.99. In addition
to di�erences between the Basic plan and the
Premium plan, there are also platform feature
di�erences between the Nintendo Switch and
Android. Some of the feature di�erences between the
plans and platforms:

1. Moving Pokémon from the 3DS-sponsored
Pokémon Bank is only available with a Premium
subscription. This is an included feature for Android.

2. The number of Pokémon that can be deposited into
Pokémon HOME are limited to 30 in the Basic plan
and 6,000 in the Premium plan.

3. The number of Pokémon that can be placed into
the Wonder Box feature at one time are restricted to
3 for Basic users and 10 for Premium users.

4. The number of Pokémon that can be placed in the
GTS (aka, Global Trade System) at once are 1 with
Basic and 3 with Premium. This feature is also
enabled for Android.

5. Basic users can only use pre-made rooms in Room
Trade, whereas Premium uses can also make new
user rooms. Android users will have the ability.

6. Only Premium subscribers can use the Judge
function. This feature is available for Android.

Figure 2 - Inside your Room

At present, the Nintendo Pokémon HOME Android
version only supports Nintendo 3DS Pokémon Bank
transfers, but NOT Pokémon Let’s Go Eevee! or
Pokémon Let’s Go Pikachu! Although there is some
speculation that Pokémon GO integration will soon be
released for mobile devices. Therefore, smart
ODROID game players might want to opt for the free
Basic plan until the Pokémon GO option has been
delivered and then decide whether to continue with
the Basic plan or upgrade to the Premium plan.

Along with the Pokémon intra-game transfers of
Pokémon HOME, there are also features for trading
Pokémon via the Global Trade System and Room

Trade events, the ability to examine Pokémon in the
Wonder Box, the opportunity to receive free “mystery”
gifts, and convert your accumulated points into
gaming Battle Points (BP). While Android users will be
able to receive Mystery Gifts, Battle Point exchange is
limited to the Nintendo Switch version only.

Figure 3 - Woo-hoo

Figure 4 - Mystery Gift

Figure 5 - Converting your points

One last feature worthy of mentioning is inside
Pokémon HOME there is the ability to register all of
your added Pokémon to the National Pokédex. Inside

this dictionary, you can read about speci�c Pokémon
abilities and moves that Pokémon can learn. This is a
charming and informational inclusion that is found
inside the Android version. You can also register both
Mega Evolve and Gigantimax forms in this mobile
database.

Figure 6 - National Pokédex

Figure 7 - My Pokémon

While it seems like Nintendo took an eternity to catch-
up to the rest of the gaming industry’s embrace of
cloud-based distributed game share, Pokémon HOME
is a feature-rich product that has the ability to enable
widespread Pokémon ecosystem adoption between
active players. Even more remarkable, this shared
experience could grow over 1000-fold with the arrival
of the proposed Pokémon GO integration. That
translates into seeing even more people wandering
around aimlessly looking at their smart device
searching for another Pokémon gym. Thanks
Nintendo and welcome to the 21st century.

Building An Xbox Using an ODROID-H2
 April 1, 2020  By @teeedubb  ODROID-H2, Tutorial

Building an Xbox clone is something that I have
wanted to do for a long time, but I never really got
around to it for various reasons - and now it is �nally
happening. This is essentially a build log, because I
know if I do not start it now, all you would get is a
couple of photos of a �nished build.

Figure 1 - I built an Xbox clone using an ODROID-H2

Why am I doing this? The OG Xbox rocked our world -
we still call the media player 'the xbox' to this day.
After it was modded it became a media powerhouse
that was way ahead of its time. Loading games o� the
HDD, emulators and of course, XBMP. Unfortunately,
due to the march of technology, it had to be retired.
With my s912 box giving me headaches and the board
I wanted was �nally back in stock, I decided it was
time to start this project and get the Xbox back into
the lounge room.

The hardware I will be using is an ODROID-H2. I chose
this because of the Intel GPU which has great support
under Linux, with HDR support coming soon. Also, the
x86 CPU outperforms many ARM systems and opens
up more software possibilities, such as emulators,
Firefox, Steam and Project M visualisations (it is not a
media player if it does not have Project M!). The board
has 2 video outs (HDMI2.0 and DP++) and with a
passive DP to HDMI adaptor the DP++ port becomes a
HDMI port which allows me to send 4k60 video to my
TV and send HD passthrough audio to my HDMI 1.4
AVR at the same time. The board runs cool, has an
external PSU and is small which will allow me to

integrate a few things into the case and keep it
uncluttered and quiet at the same time. I did think
about a mini-itx board, but the ODROID-H2 has
almost everything I need at a reasonable price.

The plan is to keep the outside fairly stock. I am not
going to use an optical drive, so the DVD faceplate will
be attached to the case. The LED will be changed to
white and the front buttons will be used for power
and reset. The smaller button has a power imprint
and the larger one has an eject imprint and I am going
to �ll those up, paint them a similar colour and leave
them blank; because I want to use the big button for
power. I thought about attaching power and reset
decals to the buttons, but I do not think that is really
that important as 99% of the time a remote will be
used to power it on. The left two controller ports will
be covered with some smoked acrylic, with a IR
receiver hiding behind one and I did think about
putting a headphone port on the other, but I have
never had the need for one and I have a USB
soundcard or a USB DAC and amp that can be used if
I ever do need it. The right two controller ports will be
a USB 2 and 3 port, which again I do not often need,
but they'll be handy for the occasional USB drive,
wired controllers and charging the DS3 controllers I
will be using with it. I did think about adding some
kind of Kodi branding to the front, but I think the
textured surface would make it di�cult to get a good
�nish, so I will probably skip that.

Inside will be the board, 2x 4gb RAM sticks, a 60gb
SSD for the OS and a 2.5" 320gb HDD for some
backups and media storage. These are drives that I
had as spare parts, and the 320gb will �ll up very
quickly so it will probably get upgraded pretty soon,
maybe to an old 3.5" HDD I have. I will be using the
NVME slot for an Intel WiFi plus BT 4 card (7265ngw)
via an adapter, which will allow me to use dual large
internal antennas and provide a good BT range for
controllers. There will also be a 4 port USB3 hub
inside to provide ports for the IR receiver, BT module,
an arduino to drive TV backlighting and a Logitech
unifying receiver. The front USB ports will be directly
connected to the rear ports, which will leave 1 spare
USB2 port on the rear. The ODROID-H2 is about
10x10cm and the Xbox is about 35x30cm so I do not

see any issues �tting all that, just cable management.
I purchased a 5V 92mm fan with the ODROID-H2 and
it is too big to �t in the same location and the original
fan, so I am going to mount it to the heatsink. It will
overhang a bit so it will also move some air around
the case which should help keep other components
cool. I will keep an eye on temps and add a rear fan if
need be, but many people run these fanless without
issue so I do not think it will be a problem.

The operating system used will be Xubuntu 19.10, for
now, and I will upgrade it to the 20.04 LTS version and
keep it on LTS versions, afterwards. Since multiple
applications will be used, I wanted a simple, light and
customisable desktop environment. I generally run
LTS versions for these types of applications, but I had
some stuttering issues at �rst and tried a few versions
of Xubuntu + Ubuntu + Libreelec while ironing out the
issue and �nally got it �xed on 19.10 and with 20.04
so close I decided to stay with it because I did not
want to do another reinstall. If I knew what I know
now I would stick with 18.04 because it has more
precompiled software available (e.g., attract mode,
emulationstation and an emulation PPA I found).

Since it is a dual monitor setup, though not in the
traditional sense as the two monitors are the one TV, I
have disabled use of the AVR monitor through some
xrandr trickery because having a second monitor that
was not easily accessible was really annoying.
Mirroring does not work because of the di�erent max
resolutions of both monitors and disabling the second
monitor would also disable sound. The only issue I
have with this now is that the alt-tab switcher shows
up twice, which is not a big issue because it will really
only run one graphical program at a time, but a quick
google shows that there are some possible
alternatives for workarounds.

So far I am really impressed with this little machine
and I highly recommend it for HTPC use - it plays 4k60
content smoothly, HDR coming soon and I do not
have to buy a new AVR to get 4k video with
passthrough audio. I have a script which automatically
switches audio outputs depending on if the AVR is on
or o� and unlike the s912 box, it does not send audio
to multiple outputs at the same time which makes
operation simpler. 3D performance is lacking, but I

was always expecting that. At 4k the Kodi GUI +
Project M lag, but they're smooth at 1080p. At 1080p,
the 3D map of Broforce is choppy, but the 2D sections
are smooth. Super Meat Boy runs smoothly at 1080p.
I tried Portal 2 but it loads to a blank screen. I have
read that using DXVK can improve performance, but I
have not delved into that yet. Also, there is always
Steam in home streaming for anything too
demanding.

Finally, some photos of the ODROID-H2 in its
temporary home. Next will be dismantling the Xbox
and I will be �nding a home for the unused parts.

Since I have been using the ODROID-H2 for a few
months now here are my thoughts on the device:

As I mentioned above, I am using it as a HTPC and for
my purpose the ODROID-H2 is amazing and ticks all
the “right” boxes - �awless kodi 4k60 HDR playback (I
have tested a libreelec test build and HDR works on
this board), x86 CPU, emulation and steam, Web
browsers, SATA and twin HDMI/DP++ ports, mainline
Linux availability and probably more. The Intel J4105
CPU struggles somewhat with 3D graphics and
heavier emulation (e.g., gzdoom would not run with
60fps at 1080p). I have found that 720p with low 3D-
gaming is possible with simple games (e.g., LEGO
Starwars runs ok but Serious Sam 3 BFE was
unplayable). PSX, DC emulation runs full speed, but
Super Mario Sunshine was really choppy and Mario
Kart Wii ran close to 60fps, but new Super Mario was
choppy.

Desktop usage with the SATA SSD is snappy enough,
though, I have not really done anything too
demanding on there. Steam in home streaming works
well and uses vaapi, but Web browsers do not use
vaapi so it will struggle to play 4k YouTube via a
browser (there is a Chromium build with vaapi
support, but it did not work with a local streaming
site).

Temperature hovers around 50C, in my case, and the
fan is silent (I have adjusted the fan curve by 10'). I
only wish this board had a dual NVMe slot, like I’ve
seen on some motherboards, so that it would accept
both a NVMe and WiFi/BT card. This would give the
ODROID-H2 great connectivity without the use of

adapters. While this machine will last me several
years, I hope that Hardkernel will continue making
these types of boards and possibly Mini-STX
motherboards with no CPU attached.

Figure 2 - Parts of the donor XBox which will be used

Figure 3 - Unfortunately, it powered up but did not
output video, and the DVD-ROM would not open either

Figure 4 - Parts that I won't be using, with a trusty
modchip installed. The console did not boot up, so I did
not know what state these parts were in

Figure 5 - I bought it a week or two after release here.
This is the best Console ever, in my opinion

Figure 6 - First, I �led the front button and painted it.
The buttons are grubby, but my workspace was clean at
this point

Figure 7 - Putty has been applied

Figure 8 - This is how it looks, after two coats of putty
and sanding down with a coarse emery board to keep
the textured feel

Figure 9 - This is how it appears after coating the
buttons with 'satin silver'. It was a good match to the lid
color

Figure 10 - I decided on a “mid grey” color instead of
silver

The silver color turned out to be too bright so I
switched to a 'mid grey'. The button now has a
di�erent texture and the colour is not a perfect
match, but is close enough. Everything that can be
seen when it is installed in the case, has been painted.
You can see the outlines of the original buttons if you
look close enough, but after about 50cm I cannot see
them anymore.

References https://imgur.com/gallery/oSOHuBt#LdS14Ui

https://imgur.com/gallery/oSOHuBt#LdS14Ui

Retro-Go: Yet Another ODROID-GO Emulator Launcher
 April 1, 2020  By @ducalex  Gaming, ODROID-GO

Retro-Go is a launcher with
NES/GB/GBC/SMS/GameGear/Colecovision emulators.
The emulator's code is based on Go-Play "Triforce"
and the launcher's design is strongly inspired by
pelle7's; however, it isn't a fork.

Features

In game menus

Smoother/faster transitions

Adjust RTC and preserve time between plays

Launcher style is customizable

Hide unwanted emulators

NES PAL support

Improved game compatibility

More scaling options

Bilinear �ltering

Fixed many crashes

Easy to build

And more!

Details

I encourage you to read the README
(https://github.com/ducalex/retro-
go/blob/master/README.md) to see the key bindings
and more details.

Code, assets, and releases:

Repository: https://github.com/ducalex/retro-go
Releases: https://github.com/ducalex/retro-
go/releases

https://github.com/ducalex/retro-go/blob/master/README.md
https://github.com/ducalex/retro-go
https://github.com/ducalex/retro-go/releases

Figure 1 - Preview screenshots

For the original article and latest download link,
please see the following post at:
https://forum.odroid.com/viewtopic.php?
f=159&t=37599

https://forum.odroid.com/viewtopic.php?f=159&t=37599

Retro Roller: An Optimized Gaming Experience For Your
ODROID-GO Advance
 April 1, 2020  By @valadaa48  Gaming, ODROID-GO Advance, Tutorial

Retroroller is a pre-built image for the ODROID-GO
Advance that provides RetroArch 32bit and 64bit on
CrashOverride's one and only stock image. Among
other tweaks, a custom kernel is integrated that
supports sleep. The idea with this image is to be able
to update via a rolling package release instead of
re�ashing. Note that any major OS upgrades like
CrashOverride's upcoming Ubuntu image will require
a re�ash. This image represents what I run on my
ODROID-GO Advance and, as such, I will most likely
not be making this into a kitchen sink of apps like
other images.

Figure 1 - The Retro Roller Gaming Image for the
ODROID-GO Advance is based on RetroArch

How to update

If you get prompted to update con�g �les, choose
which action you want to take. You should probably
backup any �les you changed �rst including RetroArch
con�guration �les and scripts until you're comfortable
with the dpkg upgrades. You only need to download
the latest deb package and install that. This means
you don't have to install each version up to the latest.

In the following commands, substitute for the most
recent package version:

$ sudo dpkg -i retroroller_.deb

$ sudo apt-get update && sudo apt-get -f install

Key Bindings

There is a global listener with the following
keybindings:

F3 + left/right -> volume

F3 + up/down -> brightness

power -> suspend

F3 + power -> shutdown

F3 + L -> perfnorm

F3 + R -> perfmax

RetroArch has speci�c keybinds as well:

F3 -> Hotkey

L + R -> Menu

You can use the “Customize Settings” -> “Input” option
to change the keybindings to your liking.

Features

64bit and 32bit app support (thanks to CrashOverride's
stock image)

RetroArch 64bit and 32bit pre-installed

Blue heartbeat led is turned o�

perfmax also sets the mem governor to high

Custom kernel with sleep enabled

RetroArch apps setup to download cores from
Safarikniv's site

NOirBRight's es_system.cfg uses retroarch where
available

Shutdown/reboot works

Headphone/speaker auto-switching works

Credits

CrashOverride for all of his hard work on creating the
Stock image, libgo2,

initial retroarch port and countless other things for this
platform.

Lakka team for their RetroArch patches, testing and
integration.

NOirBRight for his extensive testing and feedback.

Safarikniv for hosting both 32bit and 64bit RetroArch
cores for download.

Pull requests from the community are welcome!

Releases

The initial release and based image are available at
https://mega.nz/#!etlnUTjT!nxOhiLzG03jbXgcyiUeh7
_B6ovHBqvDFGWTQ4uR58Ho. Updates are available
at
https://github.com/valadaa48/retroroller/releases.

To update the image, ou need to have SSH access (via
WiFi or ethernet). You have �rst to copy the .deb �le
onto the ODROID-GO Advance using WinSCP or
Filezilla:

$ scp retroroller_1.0-2.deb odroid@OGA_IP_ADDRESS

Next, SSH to the ODROID using the Linux command
line on another computer, or use PuTTY on Windows:

$ ssh odroid@OGA_IP_ADDRESS

Then, update the package:

$ sudo dpkg -i retroroller_1.0-2.deb

When asked if you want to overwrite
retroroller_boot.sh, answer Y or I:

Con�guration �le
'/opt/retroroller/scripts/retroroller_boot.sh' ==> File
on system created by you or by a script. ==> File also
in package provided by package maintainer. What
would you like to do about it ? Your options are: Y or I
: install the package maintainer's version N or O :
keep your currently-installed version D : show the
di�erences between the versions Z : start a shell to
examine the situation The default action is to keep
your current version. *** retroroller_boot.sh
(Y/I/N/O/D/Z) [default=N] ? I Installing new version of
con�g �le /opt/retroroller/scripts/retroroller_boot.sh
...

The uno�cial release thread is available at
https://forum.odroid.com/viewtopic.php?
f=193&t=38016. For comments, questions, and
suggestions, please visit the original article at
https://forum.odroid.com/viewtopic.php?
f=193&t=38140.

https://mega.nz/#!etlnUTjT!nxOhiLzG03jbXgcyiUeh7_B6ovHBqvDFGWTQ4uR58Ho
https://github.com/valadaa48/retroroller/releases
https://forum.odroid.com/viewtopic.php?f=193&t=38016
https://forum.odroid.com/viewtopic.php?f=193&t=38140

WebThings on Armbian: Using the ODROID-XU4 for the Internet
of Things
 April 1, 2020  By Philippe Coval  Development, ODROID-XU4, Tinkering

Mozilla WebThings is a platform for controlling home
devices. A primary purpose is to give users the ability
to set up and control a “smart home” on their own
without relying on third party services. This article will
tell you why and how to set it up on ODROID-XU4.

Why?

For years, cloud -operated devices have had
limitations. Problems with interoperability and
reliability are beyond the scope of this article, but one
that needs to be addressed is privacy. I personally
consider that taking or revealing (any) user’s data
without their explicit permission is a problem that
everyone should consider. Even if you don’t see
yourself as having anything to hide, it is doubtful
you’d want to share your credit card numbers, so it’s
important to be thoughtful and considerate before
adopting a service or connecting devices because
your privacy policy will also a�ect other family

members or even your guests. We have seen some
progress when it comes to strengthening privacy in
the last couple of years thanks to certain regulations.
Europe started with GDPR, which outlined some
important regulatory guidelines when it comes to
software that handles personal data. One important
one speci�cally, article 25, requires “Privacy by
Design” in technical systems. This means they must
be designed to maintain users’ privacy from the
ground up.

Figure 1 - GPDR

Who?

It is reasonable to predict that the connected devices
market will change sooner or later. For now, you can
stay ahead and try FLOSS projects which did not wait
for regulations to enable privacy. Since the dawn of
the Mozilla IoT platform development, the project was
explicitly designed to avoid your data going to
someone else’s cloud.

Figure 2 - NoCloud

The key principle is pretty simple: all home devices
are connected only to the home network, so data just
stays local, nothing is going out. Without going into

too many details, there are many IoT standards today,
and probably none will be appropriate to match every
use case. That said, a common technology can
abstract many overlaps. This is the mission of W3C,
the organization known for the standardization of the
world wide web (HTML, HTTP, and XML). W3C’s “Web
of Things” working group (WoT) is committed to
address some IoT problems using existing web
technologies and �ll the missing gap. While some
describe WoT as the “HTML for IoT”, think that WoT
protocols are mostly for machines instead of humans,
technically we are talking about REST APIs and JSON
Schema for semantics.

What?

The WebThings framework is based on simpli�ed WoT
proposed recommendations. Today, the
implementation is composed of:

WebThings API for devices that speak REST on HTTP.
WebThings gateway can control devices from a nice
web application. WebThings gateway’s add-on
adapter(s) to translate non-WebThings devices or
services to WebThings API.

Figure 3 - ThingsGateway

How?

In this article, I will cover how an ODROID-XU4 can be
a valid single-board computer for hosting WebThings
gateway software which was originally developed for
reference target Raspberry Pi 3.

Figure 4 - ODROID-XU4

Following these instructions should also work for
other ODROIDs with minor adaptations. If you need
to pick one, I suggest you consider the ODROID-H2,
because it should be a bit simpler to develop on
x86_64 CPU architecture. Setup is not straightforward
so you’ll need a GNU/Linux host computer, SD-card,
Serial Port and Ethernet link.

Setup Armbian

The Mozilla reference image is based on Raspbian, a
Debian port for Raspberry Pi, this image won’t work
on non-Pi devices. Hopefully the Armbian project has
just released images to boot the latest Debian-10 on
various ARM boards. Either the Debian or Ubuntu
�avor of Armbian will work on ODROID-XU4, but let’s
download the minimal image and then dump it to an
SD card.

On a GNU/Linux system, I used an USB SD adapter
and these command lines:

$ lsblk # Will list your disks make sure to use

the right one

$ disk='/dev/disk/by-id/usb-Generic-

_USB3.0_CRW_-0_000000021716-0:0' #

$ file "$disk" # TODO

$

release="Armbian_20.02.1_ODROIDxu4_buster_current_

5.4.19_minimal"

$

url="https://dl.armbian.com/odroidxu4/archive/${re

lease}.7z"

$ sudo sync

$ sudo apt-get install curl 7zip-full time #

Install those tools on Debian or adapt

$ time curl -O "$url" # 3sec 155313070c

$ time 7z e -so "$release.7z" "$release.img" |

sudo dd bs=4MB of="$disk"

#| 562036736 bytes (562 MB, 536 MiB) copied,

142.735 s, 3.9 MB/s

Booting

Insert the SD image on ODROID-XU4. If you have the
serial port con�gured you should be able to view the
boot log:

$ screen /dev/ttyUSB0 115200

#| U-Boot 2017.05-armbian (Feb 17 2020 - 07:52:44

+0100) for ODROID-XU4

#|

#| CPU: Exynos5422 @ 800 MHz

#| Model: ODROID XU4 based on EXYNOS5422

#| Board: ODROID XU4 based on EXYNOS5422

#| Type: xu4

#| DRAM: 2 GiB

#| MMC: EXYNOS DWMMC: 0, EXYNOS DWMMC: 1

#| MMC Device 0 (SD): 7.4 GiB

#| mmc_init: -5, time 4

#| *** Warning - bad CRC, using default

environment

#|

#| In: serial

#| Out: serial

#| Err: serial

#| Net: No ethernet found.

#| Press quickly 'Enter' twice to stop autoboot: 0

#| (...)

A couple of minutes later, you should be able to log in
as root with the default password “1234”. Then
system will ask setup default user:

#| Armbian 20.02.1 Buster ttySAC2

#| odroidxu4 login: root

#| Password: 1234

#| You are required to change your password

immediately (root enforced)

#| Changing password for root.

#| (current) UNIX password:

#| Enter new UNIX password:

#| Retype new UNIX password:

#| ___ _ _ _ __ ___ _ _ _

#| / _ __| |_ __ ___ (_) __| | / / | | | || |

#| | | | |/ _` | '__/ _ \| |/ _` | /| | | | || |_

#| | |_| | (_| | | | (_) | | (_| | / \| |_| |__ _|

#| ___/ __,_|_| ___/|_|__,_| /_/____/ |_|

#|

#| Welcome to Armbian buster with Linux 5.4.19-

odroidxu4

#|

#| System load: 2.23 0.79 0.28 Up time: 1 min

#| Memory usage: 6 % of 1993MB IP: 192.168.1.232

#| CPU temp: 32°C

#| Usage of /: 29% of 7.1G

#|

#| New to Armbian? Check the documentation first:

https://docs.armbian.com

#|

#|

#| Thank you for choosing Armbian! Support:

www.armbian.com

#|

#| Creating a new user account. Press to abort

#| Desktop environment will not be enabled if you

abort the new user creation

#|

#| Please provide a username (eg. your forename):

user

#| Trying to add user user

#| Adding user `user' ...

#| Adding new group `user' (1000) ...

#| Adding new user `user' (1000) with group `user'

...

#| Creating home directory `/home/user' ...

#| Copying files from `/etc/skel' ...

#| Enter new UNIX password:

#| Retype new UNIX password:

#| passwd: password updated successfully

#| Changing the user information for user

#| Enter the new value, or press ENTER for the

default

#| Full Name []: User

#| Room Number []:

#| Work Phone []:

#| Home Phone []:

#| Other []:

#| Is the information correct? [Y/n] y

#| Dear User, your account user has been created

and is sudo enabled.

#| Please use this account for your daily work

from now on.

Once done, let’s inspect the system, and install a
multi-cast DNS service that will help to connect
remotely using SSH:

root@odroidxu4:~# cat /etc/os-release

#| PRETTY_NAME="Debian GNU/Linux 10 (buster)"

#| NAME="Debian GNU/Linux"

#| VERSION_ID="10"

#| VERSION="10 (buster)"

#| (...)

root@odroidxu4:~# df

#| Filesystem 1K-blocks Used Available Use%

Mounted on

#| udev 950928 0 950928 0% /dev

#| tmpfs 204128 6592 197536 4% /run

#| /dev/mmcblk1p1 7505192 498264 6915480 7% /

#| tmpfs 1020628 0 1020628 0% /dev/shm

#| tmpfs 5120 0 5120 0% /run/lock

#| tmpfs 1020628 0 1020628 0% /sys/fs/cgroup

#| tmpfs 1020628 0 1020628 0% /tmp

#| /dev/zram0 49584 632 45368 2% /var/log

#| tmpfs 204124 0 204124 0% /run/user/0

root@odroidxu4:~# sudo apt-get update

root@odroidxu4:~# sudo apt-get install avahi-

daemon

root@odroidxu4:~# reboot

Once rebooted, let’s login using SSH with
hostname.local address instead of IP that may be
di�erent for each of us:

$ ssh root@odroidxu4.local

Extra storage

Optionally you can skip or use this trick to preserve
SD-card’s life span. I just plugged a pair of USB sticks
(of 4GB each) in the two USB3 ports of ODROID. This
extra USB mass storage will be used for swap
memory and docker. once mounted as follow:

$ sudo=$(which sudo)

$ dev="/dev/disk/by-id/usb-Generic_Mass-Storage-

0:0" # TODO

$ file "$dev"

$ fdisk -l $dev || lsblk # Update previous line

$ dev='/dev/sda' # TODO update

$ label="docker"

$ yes | ${sudo} mkfs.ext4 -L "$label" "$dev" #

TODO: verify $disk variable

$ dev=/dev/sdb # TODO: update if needed

$ label="swap"

$ fdisk -l $dev

$ yes | $sudo mkswap -L "$label" "$dev"

$ free

#| total used free shared buff/cache available

#| Mem: 2041260 107724 1759992 6592 173544 1865772

#| Swap: 1020628 0 1020628

$ sudo swapoff -a

$ free

#| total used free shared buff/cache available

#| Mem: 2041260 106224 1761472 6592 173564 1867272

#| Swap: 0 0 0

$ sudo swapon "/dev/disk/by-label/swap"

$ free

#| total used free shared buff/cache available

#| Mem: 2041260 107912 1759716 6592 173632 1865584

#| Swap: 3943420 0 3943420

Install docker to use the other USB disk:

$ sudo apt-get install docker.io time git lsb-

release file

#| Need to get 55.9 MB of archives.

#| After this operation, 255 MB of additional disk

space will be used.

#| Do you want to continue? [Y/n] Y

#| (...)

$ dev="/dev/disk/by-label/docker"

$ mnt="/var/lib/docker"

$ df -h "$mnt"

/dev/mmcblk1p1 7.2G 1.2G 6.0G 17% /

$ sudo systemctl stop docker

$ sudo sync

$ sudo mkdir -p "$mnt"

$ sudo mount "$dev" "$mnt"

$ df -h "$mnt" # /dev/sda 3.7G 16M 3.5G 1%

/var/lib/docker

$ sudo systemctl restart docker

$ sudo docker version # 18.09.7

Build binaries

There are various ways to use Mozilla WebThings
platform. The simplest one would be to use the deb
package built for Raspbian but ARMv6 version won’t
be optimized for our ARMv7 CPU. So let’s try to build it
again on the device using docker to make sure the
whole process is replicable. It was for latest release
0.11.0, so I published “webthings-gateway_0.11.0-
1_armhf-debian-buster.deb” package at
https://bintray.com/rzr/deb/webthings-gateway#�les.

Feel free to install this one or rebuild on the device
using the following steps:

$ sudo apt-get install docker.io time git lsb-

release file

$ sudo apt-get install time screen

$ url=https://github.com/mozilla-iot/gateway-

deb.git

$ git clone --depth 1 --recursive "${url}"

$ cd gateway-deb

$ sudo time bash ./build-docker.sh

$ sudo docker image ls

#| REPOSITORY TAG IMAGE ID CREATED SIZE

#| c0edf15b50a7 About an hour ago 122MB

#| gatewaydeb_default latest 32e5bdf8321c 8 hours

ago 843MB

#| 51a23a2e7130 9 hours ago 1.04GB

#| Debian 10 3eee7456d779 3 weeks ago 92.8MB

$ du -hsc ./dist/*

#| 21M ./dist/WebThings-gateway_0.11.0-1_armhf-

debian-buster.deb

$ sudo chmod -Rv 700 ./dist/WebThings-

gateway_*.deb

$ sudo apt install -y ./dist/WebThings-

gateway_*.deb

#| Need to get 0 B/40.5 MB of archives.

#| After this operation, 180 MB of additional disk

space will be used.

#| Do you want to continue? [Y/n] Y

#| (...)

$ sudo reboot

Webapp

Now the most di�cult part is done (no more
command lines!) Let’s wear the user hat and connect
to the dashboard by pointing your browser at
http://odroidxu4.local:8080/. The welcome page
should appear as follows:

| Mozilla IoT

| Welcome

| Choose a secure web address for your gateway:

| [subdomain].mozilla-iot.org

| [Email]

| [Create]

| [Skip]

The gateway can be registered on mozilla.org for
remote management, this is optional, so let’s skip
subdomain as we won’t use the gateway from the
Internet for our �rst experiment. The next page will
ask to create (local) credentials:

| Welcome

| Create your first user account:

| user: [user]

| email: [user@localhost]

| password: [password]

| password: [password]

| [Next]

And now we’re ready to add some WebThings, and
you can start �lling out your dashboard with Virtual
Resources. First hit the “burger menu” icon on the top
left, go to settings page, and then go to the “add-ons”
page at https://odroidxu4.local/settings/add-ons/
and enable a “Virtual Things” adapter:

| Mozilla IoT Virtual Things Adapter

| by Mozilla IoT

Once enabled It should be listed on the adapters page
at https://odroidxu4.local/settings/adapters. You can
then go back to the 1st “Things page” (it’s the �rst
entry in the menu). We can start adding “things” by
pressing the bottom “+” button at
https://odroidxu4.local/things, then press “Done” at
the bottom:

| Virtual On/Off Color Light

| Color Light

| Save

From this point, you can decide to control a virtual
lamp from the UI, and even establish some basic rules
(second entry in menu) with more virtual resources.

Figure 5 - Virtual Things

Join the community

We just validated that our setup is working using
mock devices, so the next step is to look at other add-
ons. Today there are above 100, which is a great
showcase of community contributions. A typical use
of an add-on adapter is to connect a device that
speaks another protocol, and the add-on is just
translated to WebThings abstractions. The gateway
can support Zigbee, ZWave devices you’ll �nd on the
market. That said, some add-ons might not work
�awlessly on our ODROID-XU4 setup, so please report
issues with related projects to @rzr on GitHub and I’ll
be glad to share hints or �xes.

It goes even beyond that. Any stu� that has an API
can be managed using the WebThings platform. As an
example, I made the Activity Pub adapter that allows
posting a public message to mastodon social network
when some conditions are met. Automation is
possible using the rule engine where users can link
sensors to actuators to establish “smart behaviors”.
Remote control is possible from a progressive web
app served by the gateway itself. In my opinion, this is
much simpler and trustworthy than when you are
forced to install an app from a store on personal
phones to get access to the devices you bought.

Mozilla’s WebThings project is a good demonstration
of how a service could look the same to users but is
operated totally di�erently than what you’ll �nd today
on the IoT market. Your feedback is welcome, so that
WebThings can be improved.

Resources

https://odroidxu4.local/settings/add-ons/

https://iot.mozilla.org/

https://blog.mozilla.org/blog/2018/02/06/announcing
-project-things-open-framework-connecting-devices-
web/

https://fosdem.org/2020/schedule/speaker/philippe_
coval/

https://www.hardkernel.com/shop/odroid-xu4-
special-price/

https://www.armbian.com/

https://edpb.europa.eu/our-work-tools/public-
consultations-art-704/2019/guidelines-42019-article-
25-data-protection-design_en
https://mastodon.social/@rzr/103805535349436510

https://twitter.com/RzrFreeFr/status/1237784387346
989057

https://iot.mozilla.org/
https://blog.mozilla.org/blog/2018/02/06/announcing-project-things-open-framework-connecting-devices-web/
https://fosdem.org/2020/schedule/speaker/philippe_coval/
https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://www.armbian.com/
https://edpb.europa.eu/our-work-tools/public-consultations-art-704/2019/guidelines-42019-article-25-data-protection-design_en
https://mastodon.social/@rzr/103805535349436510
https://twitter.com/RzrFreeFr/status/1237784387346989057

Modding Your ODROID-GO Advance for Wireless Charging: A
Simple DIY Project
 April 1, 2020  By @HiveTyrant  ODROID-GO Advance, Tinkering, Tutorial

I added wireless charging capabilities to my ODROID-
GO Advance using a wireless charging receiver and a
USB breakout board. I happened to have the parts
lying around but it literally only took a couple of
minutes to do and was incredibly simple. The hardest
part is taking the case o� of the ODROID-GO Advance
without breaking clips!

The wireless charging receiver can be found on all the
usual sites, such as AliExpress, eBay, or Amazon,
although Amazon is a bit more expensive. The USB
breakout board was a couple of dollars from Adafruit,
but can also be purchased from the other sites.

I'll probably add a USB hub or USB C charging next,
but honestly, I have wireless charging pads all over
the house now so I don't think I'll ever charge it any
other way.

Figure 1 - Closeup of the soldering required to add
wireless charging to the ODROID-GO Advance.

Figure 2 - The wireless charger attached inside the
ODROID-GO Advance case.

Figure 3 - The wireless charger is now actively charging
the ODROID-GO Advance.

For comments, questions, and suggestions, please
visit the original article at
https://forum.odroid.com/viewtopic.php?
f=193&t=38193.

https://forum.odroid.com/viewtopic.php?f=193&t=38193

Linux Gaming: GameStation Turbo Advance
 April 1, 2020  By Tobias Schaaf  Gaming, ODROID-GO Advance, ODROID-GO, Tutorial

ODROID GameStation Turbo Advance is a feature-
packed gaming OS for the ODROID-GO Advance
utilizing X11 as a graphics backend and attract mode
as a frontend for emulators, games and tools.

Figure 1 - ODROID-GO Advance running GameStation
Turbo Advance

Figure 2 - Play your favorite Amiga games

Figure 3 - Play your favorite Amiga games

Figure 4 - Player your favorite Atari ST games

Figure 5 - Play your favorite ScummVM games

Figure 6 - Player your favorite Nintendo DS games

The goal is to have a shiny and �ashy UI, as well as an
easy way to integrate new software. It is based on
@Meveric’s Debian Buster with a lot of modi�cations
to make it work as a gaming image. Please note that I
still consider this image to be a ‘Work In Progress’ as
there are still some things I need to improve on, but it
is at a point where it can be shared with "the public".

Currently Supported Emulators

Amstrad CPC

Atari 2600

Atari 5200

Atari 7800

Atari 8bit

Atari Lynx

Atari ST

Bandai Wonderswan

Bandai Wonderswan Color

Capcom Play System

Capcom Play System I

Capcom Play System II

Commodore 64

Commodore Amiga

Colecovision

GCE Vectex

Magnavox Odyssey 2

Mattel Intellivision

Microsoft MSX

Microsoft MSX2

NEC SuperGrafx

NEC Turbografx-16

NEC Turbografx-CD

Nintendo 64

https://forum.odroid.com/viewtopic.php?f=193&t=37399

Nintendo DS

Nintendo Entertainment System

Nintendo Famicom Disk System

Nintendo Gameboy

Nintendo Gameboy Color

Nintendo Gameboy Advanced

Nintendo Virtual Boy

Final Burn Alpha

Sammy Atomiswave

ScummVM

Sega 32x

Sega CD

Sega Dreamcast

Sega Gamegear

Sega Genesis/Megadrive

Sega Master System

Sega Naomi

Sega SG-1000

Sharp X68000

Sinclair ZX 81

Sinclair ZX Spectrum

SNK Neo Geo AES

SNK Neo Geo CD

SNK Neo Geo Pocket

SNK Neo Geo Pocket Color

Sony Playstation

Sony Playstation Portable

Sony Playstation Portable Minis

Super Nintendo Entertainment System

The default BIOS path is /home/odroid/ROMS and you
need to place your BIOS �les in this folder (if not
marked otherwise, please check notes available from
the link at the end of the article). It is also the path
where you have to place your ROM �les, in the
respective subfolders. It is available for download at
https://oph.mdrjr.net/meveric/images/OG ...
GO2.img.xz md5 sha512 sig.

The image utilizes both 32-bit and 64-bit drivers which
allows you to run a lot of applications already existing
for armhf, even if they are not ported to ARM64, yet.

How To Start

Copy your rom �les into /home/odroid/ROMS/ folders
that correspond with the system the roms are for (e.g.

Super Nintendo Entertainment System goes to
/home/odroid/ROMS/SNES/). When you boot up the
image you see "Attract Mode Setup" it has two
options

Scrape games and artwork

Scrape games only

For artwork you need an Internet connection so either
have a USB to LAN adapter installed and working
correctly. This should work out of the box. Scraped
games only will import your games but not download
any artwork. Scraping artwork can take a very long
time (and disk space) depending on your library. It's
not recommended to scrape thousands of games at
once, unless you have a couple of hours to spare.

You will see a progress bar while the games and
artwork are being imported. This progress bar only
shows the overall progress of all emulators not for
each individual ROM, which means depending on how
many games you import the percentage of the
process will not go up until it's �nished with the
system it's currently importing.

Update Regularly:

Since there's constantly new development for this
image and, ODROIDs in general, it is highly
recommend to do all updates:

$ apt-get update && apt-get upgrade && apt-get

dist-upgrade && apt-get autoremove

This will guarantee you get the latest patches and
�xes, as well as new emulators when they become
available.

Setting up WLAN from the Command Line

Edit the �le /etc/network/interfaces or create a new
one under /etc/network/interfaces.d/ and add the
following line:

auto wlan0

iface wlan0 inet dhcp

 wpa-essid

 wpa-psk

Main Menu

https://oph.mdrjr.net/meveric/images/OGSTA/OGSTA-0.7-20200314-GO2.img.xz

The Main Menu is powered by Attract Mode and uses
the following button layout:

Figure 7 - Button Layout

Although the Buttons work in each sub menu, the
output of the button you pressed and the current
battery charge is only shown on the main menu.
Attract Mode has a screen saver mode, which will
activate after about 3 minutes of inactivity. It will show
previews of the videos and pictures of the current
selection, this means on the main menu it will show
videos of all the di�erent systems itself, while in the
sub menu of a system it will show previews of the
di�erent games. Finally, Speaker Select will cycle
through Headphones only, Headphones + Speaker,
Speaker only and OFF.

Retroarch

Many of the emulators are powered by retroarch and
use the default button layout of retroarch. The special
keys are mapped as following:

Figure 8 - Special Key Mapping

If you want to do changes on the settings of retroarch,
I advise you to exit retroarch if you want to save the
changes. If you go back into the game and then exit
the emulator, your changes may not be saved.

Amiga Emulator - FS - UAE

For Amiga Emulation I'm using FS-UAE as its user
interface is much more controller friendly than other
emulators. I also mapped Mouse movement and
buttons, as well as special keys for the Amiga. The
mapping looks like this:

Figure 9 - Amiga Key Mapping

The emulator is currently con�gured for Amiga 500
compatible games, so your AGA or CD32 games will
not work. Since many games come with multiple disks
you can zip all adf �les into one �le. The disks will be
inserted into DF0 to DF3 but you can change disks via
the menu, even if a game only supports DF0, or has
more than just 4 disks.

The Emulator uses separate folders for Kickstart �les
which can be found under:
/home/odroid/Documents/FS-UAE/Kickstarts and
under: /home/odroid/.con�g/fs-uae/ you can �nd the
con�g �les for your di�erent games. You can then, for
example, use di�erent Kickstarts if you want, or
change memory settings, etc.

Atari ST - Hatari

Atari ST runs on the Hatari Standalone emulator, not
a libretro core. It has better performance and much
better button mapping. The libretro core works only
on a very few number of games. The button layout is
as following:

Figure 10 - Atari ST Button Mapping

Some buttons are still free and may be mapped later.
There is a way to use the menu to switch disks, but it's
quite hard. The menu is not very easy to navigate,
therefore I suggest using single disk games, or games
that use a harddrive image instead.

Nintendo 64 - Mupen64plus

Mupen64plus standalone emulator is quite a bit
faster than the libretro core alternatives, therefore, I
use the standalone version here with the RICE video
core which is the fastest video core at the moment,
even though it's not perfect. The button layout is
always a controversy but this is how I mapped the
buttons:

Figure 11 - Nintendo 64 Button Mapping

This is the only emulator where you have to press two
buttons for saving and loading save states, sadly there
were not enough buttons otherwise. The
performance and quality of emulation overall di�ers a
lot between games.

Nintendo DS - DraStic

DraStic by @Exophase is a very fast, but it is a closed
source Nintendo DS emulator and therefore a little bit
complicated to get to work. The performance is very
impressive and you can play NDS very well on the
ODROID-GO Advance. The button mapping looks as
following:

Figure 12 - Nintendo DS Button Mapping

Unfortunately, the NDS (or DSi), has too many
functions to map everything, so noise emulation,
open and closing the lid are not supported which
makes some games unplayable. It seems like every
now and then DraStic does not recognize input at all
(aside from the mouse pointer). Not sure why, not
sure how to avoid it. I found restarting the emulator
seems to solve this. Just press the Quit Emulator
button and try anew. Make sure you did all system
updates before trying this.

Playstation Portable - PPSSPPSDL

PPSSPPSDL is a very well known emulator for PSP and
works quite well on the ODROID-GO Advance. It's not
as good as other devices, such as the ODROID-XU4 or
ODROID-N2, but still good enough for most games.
The button layout is as following:

Figure 13 - PSP Button Mapping

ScummVM Hints

The layout for ScummVM games are a little di�erent
from other Emulators. In the folder
/home/odroid/ROMS/SCUMMVM/ you need to create
a folder with the name of the game you want to play,
for example, Beneath a Steel Sky
(/home/odroid/ROMS/SCUMMVM/Beneath a Steel
Sky/). In this folder, you will copy all your game �les
from the ScummVM game of your choice. The next
step is to create a �le with the same name and the
extension .svm in the same folder "Beneath a Steel
Sky.svm" (/home/odroid/ROMS/SCUMMVM/Beneath a
Steel Sky/Beneath a Steel Sky.svm). Inside the �le you
put the ID of the game. In our example this is "sky".
You can �nd the game IDs on the ScummVM Home
Page in the column "Game Short Name".

Sharp X68000 Hints

The Sharp X68000 emulator supports single disk
images (.dim) and multi disk images .m3u. .m3u is a
"playback" list, which just houses the path/name of

the .dim �les. If you have games that require multiple
disks, you should put all disks inside a subfolder
inside: /home/odroid/ROMS/X68000/ and create a
.m3u �le that houses the names of the disk images.

For example: Create a folder
/home/odroid/ROMS/X68000/Gradius II

$ mkdir -p "/home/odroid/ROMS/X68000/Gradius II"

Copy all *.dim �les inside this folder

/home/odroid/ROMS/X68000/Gradius II/Gradius II

Gofer No Yabou (1992)(Konami)(Disk 1 of 2)(Disk

A).dim

/home/odroid/ROMS/X68000/Gradius II/Gradius II

Gofer No Yabou (1992)(Konami)(Disk 2 of 2)(Disk

B).dim

Create a .m3u �le that has the path of the ROMS �les
inside:

$ cat "/home/odroid/ROMS/X68000/Gradius II.m3u"

Gradius II/Gradius II Gofer No Yabou (1992)

(Konami)(Disk 1 of 2)(Disk A).dim

Gradius II/Gradius II Gofer No Yabou (1992)

(Konami)(Disk 2 of 2)(Disk B).dim

Sony Playstation

Same as Sharp X68000 you can create m3u �les and
folders for games with multiple CDs. You can switch
the CDs from the retroarch menu. For more
information please see the original article, located at
https://forum.odroid.com/viewtopic.php?
f=193&t=38177.

https://www.scummvm.org/compatibility/
https://forum.odroid.com/viewtopic.php?f=193&t=38177

